This study examined the effect of ultraviolet (UV) application on bacterial disinfection in a commercialized humidifier using ultrasonic wave (UW). To accurately examine disinfection kinetics in tap-water condition, tap-water was sterilized using a filter, and then inoculated with pure cultures of E. coli and P. putida with known viable counts. The disinfection kinetic characteristics were experimentally compared when UV alone, UW alone, and UW+UV together were applied in disinfecting the added bacteria in the commercialized humidifier. When UV alone was applied, bacterial disinfection kinetics followed a first-order decay reaction, and showed an approximately 10-time weaker disinfection compared to the typical UV disinfection in water treatment or wastewater treatment. When UW alone was applied, bacterial disinfection kinetics followed a second-order decay reaction with a low disinfection rate constant of 0.0002 min-1(CFU/mL)-1. When UV and UW were applied together, however and interestingly, the disinfection rate constant (0.0211 min-1(CFU/mL)-1) was approximately 100 times increased than that for the UW alone case. These results revealed that the co-use of UV and UW can provide synergistic effect on bacterial disinfection in a tap-water condition in household humidifiers.
The study aimed to determine effects of light emitting diode (LED) and the ultraviolet radiation (UVA) light of plant factory on plant growth and ascorbic acid content of spinach (Spinacia oleracea cv. Shusiro). Plants were grown in a NFT (Nutrient Film Technique) system for 28 days after transplanting with fluorescent light (FL, control), LEDs and UVA (Blue+UVA (BUV), Red and Blue (R:B(2:1)) + UVA (RBUV), Red+UVA (RUV), White LED (W), Red and Blue (R:B(2:1)), Blue (B), Red (R)) under the same light intensity (130 μmol·m-2·s-1) and photoperiod (16/8h = day/night). All the light sources containing the R (R, RB, RUV, and RBUV) showed leaf epinasty symptom at 21 days after transplanting (DAT). Under the RUV treatment, the lengths of leaf and leaf petiole were significantly reduced and the leaf width was increased, lowering the leaf shape index, compared to the R treatment. Under the BUV, however, the lengths of leaf and leaf petiole were increased significantly, and the leaf number was increased compared to B. Under the RBUV treatment, the leaf length was significantly shorter than other treatments, while no significant difference between the RBUV and RB for the fresh and dry weights and leaf area. Dry weights at 28 days after transplanting were significantly higher in the R, RUV and BUV treatments than those in the W and FL. The leaf area was significantly higher under the BUV treatment. The ascorbic acid content of the 28 day-old spinach under the B was significantly higher, followed by the BUV, and significantly lower in FL and R. All the integrated data suggest that the BUV light seems to be the most suitable for growth and quality of hydroponically grown spinach in a plant factory.
Terrestrial animals are widely considered to be well protected from damage caused by ambient UV radiation, and thus the direct effects of solar UV-B radiation on arthropods have not attracted a great deal of attention. However, if plant-dwelling arthropods have evolved behavioral adaptations to solar UV-B radiation, but not morphological or physiological adaptations, the resources available to them would be strongly limited. Tetranychus urticae and their dominant natural enemies, phytoseiid mites, usually stay on the lower leaf surfaces. Because of the accumulation of UV-B-absorbing compounds such as flavonoids in the leaves, the upper and lower leaf surfaces provide different UV environments.
We tested whether UV irradiation affects survival and reproduction of T. urticae and, if so, whether staying on the lower leaf surfaces is beneficial for their performance in solar UV radiation. Consequently, we observed lethal effects of artificial UV-B irradiation and solar UV radiation on T. urticae. However, by remaining on lower leaf surfaces, the mites could avoid such deleterious effects. These suggest that staying on the lower leaf surfaces is a behavioral adaptation of T. urticae to avoiding harmful solar UV-B radiation. Lethal effects of UV-B irradiation also exerted strong deterrent effects on the hatchability of phytoseiid mites. Additionally, preliminary experiments suggested that phytoseiid mites avoided and quickly escaped from a place irradiated by solar UV.
Therefore, solar UV-B radiation may strongly affect the diurnal and spatial patterns of distribution or migration of mite communities on host plant canopies.
Reballasting at sea, as recommended by the IMO guidelines, currently provides the best-available measure to reduce the risk of transfer of harmful aquatic organisms, but is subject to serious ship-safety limits. It is therefore extremely important that alternative, effective ballast water management and treatment methods are developed as soon as possible, to replace reballasting at sea. Filtration-Ultraviolet radiation-Electrolytic process (FUE) was evaluated for disinfection of seawater used In ballast water Optimal current density and UV light intensity were 2.0A/dm2 and, 220㎼/ cm2/m with which 100% reduction time was 2sec in a Ultraviolet radiation-Electrolytic process. This study showed that FUE process was effective for the disinfection of commonly isolated bacteria and bacillus from ballast water.
Traditionally, ultraviolet (UV) has been used for treating the pressure sore and skin wound. The effects of UVA and UVB radiation on disinfection have been reported. The purpose of this study was to examine the effectiveness of UVC radiation on disinfection of Escherichia coli, Staphylococcus aureus, Salmonella typhimurium in vitro. Three bacterium were radiated by UVC (250 nm, 20 seconds) and incubated at for 24 hours at the agar culture medium. Kill rates of all three bacterium were 99.9%. UVC radiated on three kinds of bacterium for 30 or 60 seconds. Kill rates were 99.9% both 30 and 60 seconds. This data suggests that UV light at 250 nm could be a useful method to minimize infection and shorten healing time in pressure sore and skin wound condition.
This study has carried out to evaluate the effect of NaCl as electrolyte of single (electrolysis and UV process) and complex (electrolysis/UV) processes for the purpose of removal and mineralization of Rhodamine B (RhB) dye in water. It also evaluated the synergetic effect on the combination of electrolysis and UV process. The experimental results showed that RhB removal of UV process was decreased with increase of NaCl, while RhB removal of electrolysis and electrolysis/UV process was increased with increase of NaCl. The decolorization rate of the RhB solution in every process was more rapid than the mineralization rate identified by COD removal. The latter took longer time for further oxidation. Absorption spectra of an aqueous solution containing RhB showed a continued diminution of the RhB concentration in the bulk solution: concomitantly, no new absorption peaks appeared. This confirmed the decolorization of RhB, i.e., the breakup of the chromophores. It was observed that RhB removal in electrolysis/UV process is similar to the sum of the UV and electrolysis. However, it was found that the COD of RhB could be degraded more efficiently by the electrolysis/UV process than the sum of the two individual process. A synergetic effect was demonstrated in electrolysis/UV process.
In the present study we studied the growth, photosynthetic traits and protective mechanisms against oxidative stress in the primary loaves of cucumber (Cucumis sativus L.) seedlings with or without UV-B treatment. Cucumber seedings were irradiated with UV-B for 10 days in environment-controlled growth chambers. The primary leaves irradiated with UV-B showed reduction in leaf length and decreased biomass production. The reduced biomass production seemed to be due to a negative effect of UV-B radiation on the photosynthetic process. Changes in chemical properties of leaf, such as chi a/b ratio affected photosynthesis. UV-B significantly affected chl b content compared with chi a in the light harvesting complex resulting reduced photosynthetic activity Fv/Fm decreased with an UV-B stress, suggesting that the photosynthetic apparatus, and particularly, PS II was damaged under UV-B stress. Malondialdehyde(MDA) concentration which represents the state of membrane lipid peroxidation Increased significantly under UV-B stress confirming an oxidative stress. UV-B exposure with SA solution(0.1-1.0 mM) can partially ameliorated some of the detrimental effects of UV-B stress. Leaf injuries including loss of chlorophyll and decreased ratio of Fv/Fm were reduced with combined application of UV-B and SA. ABA and JA showed similar mode of action in physiological effects on photosynthetic activities though the levels were lower than those from SA treated plants. Chloroplast ultrastructure was also affected by UV-B exposure. The thickness of leaf tissue components decreased and the number of grana and thylakoids was reduced in chloroplast applied UV-B or SA alone. At combined stress granal and stromal thylakoids were less affected. The leaves under combined stress acquired a significant tolerance to oxidative stress. From these results, it can be suggested that SA may have involved a protective role against UV-B induced oxidative damage.
The effect of UV on the mortality rate of toxic dinoflagellate Amphidinium carterae causing a red tide in the coastal area of south Korea was investigated in the batch and continuous-scale reactor equipped with ultraviolet irradiation-apparatus. Degussa P25 titanium oxide, a photocatalyst proved to be effective for the mortality of Amphidinium carterae supplied with photocatalyst and UV radiation were greater than 95% in 2 minutes of UV radiation and the rate were higher than that by UV-radiation without titanium dioxide in the batch and continuous-flow scale reactor. The mortality time of Amphidinium carterae increased with the cell density under UV-illumination in the batch scale reactor. The mortality rate in the density of 5.0×104 cells/mL at the same experimental condition was more than 90% in 4 minutes in the continuous flow scale reactor. The percentage of 99.9±0.1% of Amphidinium carterae in the density of 5.0×104 cells/mL was died in 20 minutes when the phytoplankton was illuminated with UV-radiation without photocatalyst.