Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum causes fowl typhoid in poultry. In this study, we isolated Salmonella from a Korean retail chicken shell egg and performed whole-genome sequencing, from which we identified one chromosome (4,659,977-bp) and two plasmids (plasmid_1: 87,506 bp and plasmid_2: 2,331 bp). The isolate serotype was confirmed to be Gallinarum, with a biovar type of Gallinarum, which was finally identified as Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum. Multilocus sequence typing confirmed that the isolate was that of sequence type 78. The antimicrobial resistance gene, aac(6')- laa, was identified on the chromosome, and 166 virulence genes were detected on the chromosome and plasmid_1.
국내에서 V. parahaemolyticus로 인한 식중독 사고가 지 속적으로 보고되고 있으며, 최근 국내 수산물 판매량 및 수산물 양식에 사용되는 항생제 판매량은 증가하는 추세 이다. 따라서 본 연구는 국내에 유통되는 수산물에서 분 리한 V. parahaemolyticus의 분포, 항생제 감수성, 유전적 특성 및 유전학적 통계를 조사하였다. 79건의 유통 수산 물로부터 47건(59.5%)에서 V. parahaemolyticus가 분리되 었다. 항생제 내성 양상의 경우, 총 47균주의 분리 균주에 서는 ampicillin에 2균주(4.3%)가 내성을 보였으며, 이외 균주는 모든 항생제에 대해 감수성을 보였다. 항생제 내 성 유전자의 경우, 모든 균주(100%)로부터 blaCARB family gene, tet(35), catC가 확인되었으며, 1균주(2.1%)에서는 fos 가 확인되었다. 병원성 유전자 여부의 경우, 모든 분리 균 주에서 tdh, trh 유전자는 확인되지 않았으나, T3SS1은 모든 균주(100%), T3SS2는 1균주(2.1%)에서 확인되었다. MLST의 경우, 17균주로부터 15가지의 ST가 확인되었으 며, ST 658가 3균주, 이외 14가지 ST는 1균주씩 확인되 었다. 확인된 ST는 대부분 중국, 태국 등의 환경 분리주로 확인되었으며, ST 396, ST 3042는 중국 임상 분리주로부터 확인되었다. 이로써, 최근 국내에 수산물과 관련한 식중독, 유통량, 항생제 판매량 등의 추세에 따른 위험성에 V. parahaemolyticus에 대한 지속적인 연구가 필요할 것으로 사 료되며, 본 연구는 그에 대한 도움이 될 것이라 사료된다.
Spodoptera eridania and S. ornithogalli (Lepidoptera: Noctuidae), which are polyphagous pests that damage various crops such as tomatoes and beans are regulated quarantine species that are highly likely to invade South Korea. Therefore, it is crucial to promptly and accurately identify the presence of S. eridania and S. ornithogalli in crop fields to effectively eradicate as a regulated quarantine species. In this study, we developed a loop-mediated isothermal amplification (LAMP) assay, which allows for rapid in-field identification. To develop the LAMP assay, we selected target species-specific genomic regions from the whole-genome sequences of one target and 13 other lepidopteran species. We validated each five and six primer sets that consistently produced positive reactions in S. eridania and S. ornithogalli, respectively. To test the sensitivity of the each locus, LAMP reactions were performed using various reaction times using crude DNA, which was extracted from various types of adult tissues. All sensitivity tests were also successful.
Bacillus velezensis TJS119 was isolated from the freshwater, and antagonistic activity against of pathogenic fungi. Strain TJS119 showed a broad spectrum of antagonistic activities many fungal pathogens, including the green muscardine fungus Metarhizium anisopliae. The whole-genome sequence of B. velzensis TJS119 was analyzed using the illumina platform. The genome comprises a 3,809,913 bp chromosome with a G + C content of 46.43%, 3,834 total genes, 10 rRNA and 73 tRNA genes. The genome contained a total of 8 candidate gene clusters (difficidin, fengycin, bacillaene, macrolactin, bacillibactin, bacilysin, surfactin and butirosin) to synthesize secondary metabolite biosynthesis. Overall, our data will aid future studies of the biocontrol mechanisms of B. velezensis TJS119 and promote its application in insect disease control.
국내 유입 가능성이 높은 검역 관리해충인 Spodoptera eridania 및 S. ornithogalli는 전 세계적으로 토마토, 콩 등 여러 종의 작물을 가해하는 광식성 해충이다. 이에 따라 국내 유입 시 해당 작물에 높은 경제적 피해를 입힐 가능성 이 있으므로 신속 정확한 진단이 필요한 실정이다. 따라서 본 연구에서는 상기 두 종을 대상으로 현장 활용이 가능한 LAMP 진단법 개발을 수행하였다. 표적종 두 종 및 비표적종 11종(국내 발생 Spodoptera 종 및 동일 기주 가해종 등)의 전장유전체 정보를 확보한 후 비교 분석을 통해 각 표적종 별 특이적 영역을 확보한 후 해당 영역을 대상으로 LAMP 프라이머를 제작하였다. DNA 농도 10 ng/μL, 반응시간 40분을 기준으로 LAMP 진단을 수행한 결과, Spodoptera eridania는 5개의 LAMP 진단 마커를 개발하였고, S. ornithogalli는 3개의 LAMP 진단 마커를 개발하였다.
고추는 한국에서 매우 중요한 양념 중 하나이다. 하지만 수입 고춧가루와 다진 양념(다대기)에 부과되는 관세율(45%/270%)의 차이로 인해, 다진 양념이 수입된 후, 건 조 및 분쇄 과정을 거쳐 고춧가루로 제작되고 있는 실정 이다. 본 연구에서는 종 특이 PCR 기술과 whole-genome amplification 방법을 접목하여 고춧가루(N=45) 및 다진 양 념(N=5) 제품의 사용원료(고추, 마늘, 양파, 파, 생강)를 분 석하였다. 모니터링 결과, 39개 고춧가루 제품은 표시사항 을 준수하였으며, 6개 고춧가루 및 5개 다진 양념 제품은 제조 기준을 충족시키지 못했다. 따라서 분석 제품의 22% 가 표시사항을 준수하지 못한 것으로 밝혀졌으며, 본 연구에 사용한 분석 방법은 고춧가루 제품에 사용된 원료 분석에 적합한 방법임을 입증하였다.
Alterations affecting the status of robustness and health can bring about physiological changes including hematological parameters in pigs. To identify quantitative trait loci (QTL) associated with 8 hematological phenotypes (one leukocyte trait, six erythrocyte traits, and one platelet trait), we performed a genome-wide association study using the Porcine SNP 60K BeadChip in an intercross population between Landrace and Korean native pigs. A total of 36,740 SNPs from 816 F2 offspring were analysed for each blood related traits after filtering by quality control. Data were analysed genome-wide rapid association using the mixed model and regression (GRAMMAR) approach. A total of 257 significant SNPs (P<1.36x10-6) on SSC3, 6, 8, 13, and 17 were detected for blood related traits in this study. Interestingly, the genomic region between 17.9 and 130 Mb on SSC8 was found to be significantly associated with RBC, MCV, and MCH. Our results include 5 significant SNPs within five candidate genes (KIT, IL15, TXK, ARAP2, and ERG) for hematopoiesis. Further validation of these identified SNPs could give valuable information for understanding the variation of hematological traits in swine.
Recently, we published a microinjection method for generating transgenic cattle using the DNA transposon system and their analysis by next-generation sequencing (Yum et al. Sci Rep. 2016 Jun 21;6:27185). In that study, we generated transgenic cattle using two different types of DNA transposon system, sleeping beauty (SB) and piggybac (PB), carrying Yellow fluorescent protein with SB (SB-YFP, female) and green fluorescent protein with PB (PB-GFP, male) under the control of the ubiquitous CAG promoter, respectively. The female and male founder cattle have been grown up to date (the female age: 40 months old, the male age: 33 months old) without any health issues. In genomic instability and blood analysis, there was no significant differences between wild type and founder cattle. In the present study, we confirmed germ-line transmission of the transposon-mediated transgene integrations and ubiquitous and persistent expression of transgene in second generation of offspring (F1). The F1 was born without any assistance and expressed GFP in the eyes without UV light. The ubiquitous expression of GFP was detected in skin fibroblast from the ear tissue and confirmed by genomic DNA PCR, which suggest that the transgene from the PB-GFP was successfully transmitted. Unfortunately, no transgene from SB-YFP were identified. To confirm the transgene integration site, the genomic DNA from blood was extracted and performed next-generation sequencing (NGS). The GFP gene was integrated in chromosome 4 (two copies), and 6. As results, a total of two copies of paternal transgene transmitted into the F1. All the integrated position was not related with coding region and there was no significant difference in genomic variants between transgenic and non-transgenic cattle. To our knowledge, this is the first report of germ-line transmission through non-viral transgenic founder cattle. Those transgenic cattle will be valuable resource to many fields of biomedical research and agricultural science.
Lentinula edodes, the popular shiitake mushroom, is one of the most important cultivated edible mushrooms. It is used as a food and for medicinal purposes. Here, we present the 46.1 Mb draft genome of L. edodes, comprising 13,028 predicted gene models. The genome assembly consists of 31 scaffolds. Gene annotation provides key information about various signaling pathways and secondary metabolites. This genomic information should help establish the molecular genetic markers for MAS/MAB and increase our understanding of the genome structure and function.
Rice stripe virus (RSV) is one of the serious plant pathogenic viruses for rice and mediated by small brown planthopper, Laodalphax striatellus. So far, the studies have been mainly focused on the interaction between the host plant and the virus. In this study, for better comprehension of the interactions among Rice stripe virus, rice and small brown planthopper, transcriptomes of the RSV-viruliferous (RVLS) and non-viruliferous L. striatellus (NVLS) were comparatively analysed. For this, non-viruliferous L. striatellus were collected from non-infected rice field and fed RSV-infected rice for 5 days. With the RNAs prepared from the RSV-viruliferous and the non-viruliferous small brown planthoppers, we conducted Illumina RNA sequencing (Hiseq 2000) and then two transcriptome databases were generated from RVLS and NVLS, respectively. The transcriptome of RVLS and NVLS were campared to figure out how the gene expression of the insects affected by Rice Stripe Virus. RSV-dependently regulated genes analysed from this study may have important functions in the transmission and replication of RSV.
Previously, we demonstrated the presence of a second copy of LPS myristoyl transferase in enterohemorrhagic Escherichia coli O157:H7, an important zoonotic diarrheagenic food-borne pathogen; the pO157-encoded ecf (an eae-conserved fragment) and the chromosomally-encoded lpxM (also referred to as msbM) genes. Although both genes share the same function as an LPS myristoyl transferase, the pO157-encoded ecf is thermoregulated via an intrinsically curved DNA while the chromosomal lpxM is regulated by the PhoP/Q two component regulatory system. However, it is unclear why E. coli O157: H7 carries two copies of LPS myristoyl transferase that are differentially regulated. In this study, a whole genome-scale transcriptome specific to E. coli O157:H7 was carried out for identification of the genes differentially expressed in the amyristoylated E. coli O157:H7. The results identified a total of 110 EHEC genes that were up- or down-regulated in the amyristoylated E. coli O157:H7 strain, including genes associated with virulence (26.36%), metabolism (20.91%), transport (10.91%), signal transduction (4.55%), genetic information processing (3.64%), stress response (2.73%), regulatory function (2.73%), motility/adherence (3.64%), cell envelope (2.73%), cell division (1.82%) and ORFs of unknown function (17.27%). Of particular interest, the expression of LEE pathogenicity island genes was significantly influenced by LPS structural defects.