검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9,685

        461.
        2023.11 구독 인증기관·개인회원 무료
        Regulatory agencies require burn-up verification to ensure that dry storage casks using burn-up credit are not loaded with fuel with a reactivity greater than the allowable standard. Accordingly, in preparation for dry storage of SF, the reliability of the burnup was verified and action plans for fuel with confirmed errors were reviewed. Reliability verification was performed by comparing the actual burnup calculated with combustion calculation code (TOTE, ISOTIN) used in NPP and the design burnup calculated with the nuclear design code (ANC). As a result of comparing the differences between actual burnup and design burnup for 7,414 assemblies of SF generated from CE-type NPPs, the average deviation was confirmed to be 0.79% and 220 MWD/MTU. In the CE-type NPPs, no fuel showing large deviations was identified, and it was confirmed that reliability was secured. As a result of comparing the differences in 11,082 assemblies of SF generated from WH-type NPPs, the differences were not large, averaging 1.16% or 422 MWD/MTU. However, fuels showing significant differences were identified, and cause analysis was performed for those fuels. The cause analysis used a method of comparing the burnup of symmetrically loaded fuels in the reactor. For fuels that were not symmetrically loaded, a method was used to compare them with fuels with similar combustion histories. As a result of the review, it was confirmed that the fuel was under- or over-burned compared to symmetrically loaded fuel. For fuels for which clear errors have been identified, we are considering replacing them with the design burnup, and for fuels whose causes cannot be confirmed, we are considering ways to maintain the actual burnup.
        462.
        2023.11 구독 인증기관·개인회원 무료
        More than 20,000 bundles of spent nuclear fuel are stored in the spent nuclear fuel storage pool of domestic nuclear power plants, and the dry storage facility project in the nuclear power plant site is being promoted as the saturation of the wet storage pool is imminent. Since bending or twisting of spent nuclear fuel is an important item in order to load spent nuclear fuel into a dry storage cask, PSE (Pool Side Examination) was performed to verify this. This paper describes whether it can be safely loaded into a dry storage cask based on the measurement results of bending or twisting of spent nuclear fuel. The nuclear fuel assembly is designed to prevent excessive assembly bending and twisting because it can cause interference during dry storage and handling due to factors such as differences in depletion of nuclear fuel rods, irradiation growth, and coolant flow during reactor operation. The bending of the nuclear fuel assembly is measured by establishing a Plumb Line to photograph the nuclear fuel assembly based on it, and calculating a pixel that images the distance between the support grid and the Plumb Line. The twisting of the nuclear fuel assembly is measured by forming a virtual vertical plane with two Plumb Lines, and based on this, the twisting angle of the lower fixed compared to the upper fixed. As a result of the measurement, the bending of spent nuclear fuel was about 0.0-10.2 mm, much lower than the reactor loading criteria of 15.0 mm, and in the case of twisting, about 0.0~2.2° much lower than the reactor loading criteria of 5.0°. Therefore, it was confirmed that spent nuclear fuel at domestic nuclear power plants was not affected by bending and twisting when loading into dry storage cask.
        463.
        2023.11 구독 인증기관·개인회원 무료
        In Korea, most temporary storage facilities for spent nuclear fuel are nearing saturation. As an alternative to this, the 2nd basic plan for high-level radioactive waste management specified the operation plan of dry interim storage facility. Meanwhile, the NSSC No. 2021-19 stipulates that it is necessary to evaluate the possibility and potential effect of accident before operating interim storage facility. Therefore, this study analyzed the categories of accident scenarios that may occur in dry storage facility as part of prior research on this. We investigated the case of categorization of dry storage facility accident scenarios of IAEA, NRC, KAREI, and KINS. The IAEA presented accident scenarios that could occur in on-site dry storage facility operated with silo and cask method. NRC has classified accident scenarios in dry storage facility and estimated the probability of accidents for each. KAERI and KINS selected major accident scenarios and analyzed the processes for each, in preparation for the introduction of dry storage facility in Korea in the future. Overall, a total of 10 accident scenarios were considered, and the scenarios considered by each institution were different. Among 10 scenarios, cask drop and aircraft collision were included in the categorization of most institutions. The results of this study can be used as basic data for cataloging accidents subject to safety evaluation when introducing dry interim storage facility in Korea in the future.
        464.
        2023.11 구독 인증기관·개인회원 무료
        South It is necessary to develop the future technologies to improve the sustainability and acceptability of nuclear power plants generation. Currently, our company is preparing to build the dry storage facility on-site in accordance with the basic plan for managing high-level radioactive waste announced by the government in 2021. However, studies on technologies for the volume reduction of spent nuclear fuel to increase the efficiency of on-site spent fuel dry storage facilities are very not enough. Accordingly, in this study, the storage efficiency and appropriateness for the SF volume reduction processing technologies such as SF oxide processing technology and consolidation technology are evaluated. Finally, the goal is to develop the optimized technologies to improve the storage efficiency of spent nuclear fuel. As a result in this study is followings. [Safety] After removing volatile fission products (Xe, Kr, I, etc.), Xe, Kr, etc. are removed during storage of the sintered structures. UO2 has a high melting point of approximately 1,000°C after cesium (Cs) has been removed, and heat can be removed by natural convection. [Economy]1999 DUPIC unit facility unit price reference, 2020 standard 328 $/kg estimated. A Comprehensive Approach Considering the Whole System is needed. Benefit from replacement and continuous operation of metal storage containers. Changes in economic efficiency obtained in conjunction with fluctuations in electricity prices and disposal. [Waste filter] A separated solidification facility high-level waste filter is required, and overseas outsourcing must be considered. [Waste cladding]. Cannot be accommodated in low-level disposal site. This reason is why the Ni nuclides occur to be in bulk. [Metal structural material] It is possible to reduce the initial volume by 7.6% or more when compressed or melted, but the technology needs to be advanced. [Oxide blocks] Larger size and density are expected to improve storage and disposal efficiency. [Facilities operation waste] Expected to be able to be disposed of at mid-to-low level decommissioning sites in Gyeongju city. [Solidified volatile nuclides and activated metals] Expected to improve storage efficiency when used volume is reduced and stored, such as outsourced reprocessing. [Oxide block] Radioactivity and decay heat are estimated to be reduced by half during oxide treatment. 75% reduction in volume and 40% reduction in storage area compared to used nuclear fuel before treatment. [Merits/Shortages] Improvement of storage and disposal efficiency empirical research such as large-capacity [real-scale] oxide block production is required. Oxide processing facilities are likely to be classified as post-use nuclear fuel processing facilities. It is determined that additional documents such as a Radiation Environmental Report (RER) must be submitted. Existence of possible external leaks of glass, highly mobile radionuclides from the point of view of nuclear criticality and heat removal. Acceptancy requirements of citizens in the process of creating additional sites for oxide treatment facilities. Considering social public opinion, it is necessary to secure the acceptability such as residents’ opinions convergence. Characteristics of high nuclear non-propagation compared to other processing technologies involving chemical processing. Also, Expectation of volume reduction effect for spent nuclear fuel itself. Volume reduction methods for solid waste and gaseous waste are required.
        465.
        2023.11 구독 인증기관·개인회원 무료
        A lot of CANDU Spent Fuels (CSFs) have been stored in spent nuclear fuel pools and dry storage facilities. In accordance with the enhanced nuclear regulations, the initial characteristics of CSF should be inspected to ensure the integrity of CSF and the reliable operation of storage system before loading it into a cask for long-term dry storage. For the inspections, an initial characteristics measurement equipment was designed, which is used for Pool-Side Examination (PSE) in the spent fuel pool of the pressurized heavy water reactor nuclear power plant. Measurements using the equipment consist of non-contact inspections and contact inspections. The non-contact inspections do not affect CSF integrity, whereas the integrity of CSF can be reduced during the contact inspections under abnormal operating conditions because the probe of equipment may apply specific loads to the CSF. Therefore, the structural integrity evaluations of equipment and CSF are performed using Finite Element (FE) analyses for four combinations based on two abnormal conditions and two probe positions. The used abnormal conditions are the pressing load condition and the scratching load condition, and two probe positions are the center and bottom of the fuel rod in the longitudinal direction, respectively. In this evaluation, the bottoms of the fuel rod or CSF are defined as the regions facing the bottom surface of equipment. The analysis of the pressing load condition is performed by pressing the probe of the equipment in radial direction of the CSF fuel rod. That of the scratching load condition is carried out by applying a specific radial load to the CSF fuel rod using the probe and then applying the load to the surface of the fuel rod while moving axially along the surface. All combinations are analyzed considering geometric, boundary and material non-linearity under the dynamic load, which is dependent on the equipment operating velocity. The stresses of CSF and equipment components were obtained from these analyses. The maximum stress of each component was generated at the combination on the scratching load condition for the bottom position among the four combinations. The obtained maximum stresses are lower than the yield stress for each component material. Also, the CSF is not overturned due to the support plate of the equipment in all analyses. Therefore, the structural integrity and safety of the equipment and the CSF are maintained under abnormal operating conditions during the inspection using the initial characteristic measurement equipment.
        466.
        2023.11 구독 인증기관·개인회원 무료
        Zircaloy-4 is utillzed in nuclear fuel rod cladding due to its strength and corrosion resistance. However, it can undergo deformation over time, known as creep, which poses a safety risk in reactors. Furthermore, hydrogen absorption during reactor operation can alter its properties and affect creep rates. Previous research suggests a trend in which hydrogen concentration corelates unidirectionally with creep rates, either increasing or decreasing as the concentration rises. This trend can also be observed in EPRI’s creep model, EDF-CEA Model-3. However, recent literature has suggested that creep behavior may vary depending on the state of hydrogen presence. Therefore, it has become evident that creep behavior can be influenced not only by hydrogen concentration but also by the state of hydrogen presence, whether it is in a solid solution state or precipitated as hydrides. Our study aimed to compare creep behavior in specimens with hydrogen concentrations below and above solubility limits. We fabricated Zircaloy-4 plate specimens with varying hydrogen concentrations and conducted creep tests. The results revealed that specimens below the solubility limit exhibited decreasing creep rates as hydrogen concentration increased, while those above the limit displayed increasing creep rates. This investigation confirms that the state of hydrogen presence significantly impacts creep behavior within Zircaloy-4 cladding. As part of our additional research plans, we intend to conduct creep tests on the material based on its orientation, whether it is in the rolling direction (RD) or the transverse direction (TD). We also plan to perform creep tests on ring specimens. Additionally, for the ring specimens, we aim to evaluate how creep behavior differs between the cold-worked stress-relieved (CWSR) condition and the recrystallized annealed (RXA) condition achieved through high-temperature heat treatment.
        467.
        2023.11 구독 인증기관·개인회원 무료
        The types of fuel loaded and burned in domestic nuclear power plants are WH-type and OPR/ APR-type nuclear power plants, with a total of 19 types. In the case of spent nuclear fuel released in Korea, the low combustion level of 45,000 MWD/MTU or less accounts for about 75%. In terms of fuel type, WH 17×17 and CE 16×16 fuels account for about 85% of all spent nuclear fuels. The thickness of the oxide film of the fuel cladding can make the fuel rod vulnerable during reactor operation, directly affecting the integrity of the fuel rods. so, it is a very important design factor in design. Therefore, the fuel rod design code that predicts and evaluates this has also been developed to accurately predict fuel rod corrosion. And it’s being applied to the design. In this study, the ECT probe measured by inserting it between fuel rods. The thickness of the fuel cladding oxide film was measured for spent nuclear fuel. When reloading operational nuclear fuel, the IAEA recommends an oxide film thickness of up to 100 micrometers. In this study, it was confirmed that spent nuclear fuels keeping integrity burned for 2-3 cycles were sufficiently maintained within the limit. However, the difference could be confirmed according to the characteristics of the coating material, the combustion cycle, and the use of poison rods. For the reliability of the data, symmetrical to the quadrant fuels were selected, and the fuel burned at the same period was measured. The method of selecting the target fuel can produce meaningful results.
        468.
        2023.11 구독 인증기관·개인회원 무료
        To mark the 70th anniversary of the alliance between South Korea and the United States, President Yoon Seok-youl of South Korea and President Joseph R. Biden of the United States convened at the White House, adopting the pivotal “Washington Declaration.” This significant act paved the way for the establishment and institutionalization of the ROK-US Nuclear Consultative Group (NCG). The NCG is envisioned as a mechanism to address North Korea’s nuclear threat, striving for nuclear sharing and a nuclear defense system, thereby alleviating concerns about nuclear security. The NCG is perceived as a crucial advancement in the realm of ‘tailored extended deterrence’ on the Korean Peninsula. However, its operational scope and efficacy remain subjects of debate within South Korea. A comparative analysis with other consultative entities, such as NATO’s Nuclear Planning Group (NPG) and Extended Deterrence Strategy Consultative Group (EDSCG), raises questions about NCG’s unique contributions and potential functional overlaps. Furthermore, the establishment of the NCG represents a notable progression in the strengthened ROK-US alliance. This progression coincides with the resumption of large-scale joint nuclear security military exercises under the new administrations of both nations. Anticipated future operations within the NCG framework encompass the continual deployment of strategic assets and the execution of nuclear simulation exercises. Such actions serve not merely as a deterrent message to North Korea but also aim to instill confidence in the US’s commitment to extended deterrence among the South Korean populace. This study aims to highlight the significance and implications of the ROK-US Nuclear Consultative Group (NCG) through an exhaustive comparative analysis of existing nuclear security consultative bodies and pertinent nuclear security policies. Moreover, this research emphasizes strategies to boost the NCG’s effectiveness, the necessity for policy enhancements to foster South Korea’s nuclear security autonomy, and the importance of raising nuclear security awareness among the general public.
        469.
        2023.11 구독 인증기관·개인회원 무료
        Recently, the status of North Korea’s denuclearization has become an international issue, and there are also indications of potential nuclear proliferation among neighboring countries. So, the need for establishment of nuclear activity verification technology and strategy is growing. In terms of ensuring verification completeness, sample collection-based analysis is essential. The concepts of Chain of Custody (CoC) and Continuity of Knowledge (CoK) can be defined in the process of sample extraction as follows: CoC is interpreted as the ‘system for managing the flow of information subjected by the examinee’, and CoK is interpreted as the ‘Continuity of information collection through CoC subjected by the inspector’. In the case of sample collection process in unreported areas for nuclear activity verification, there are additional risks such as worker exposure/kidnapping or sample theft/tampering. Therefore, the introduction of additional devices might be required to maintain CoC and CoK in the unreported area. In this study, an Environmental Geometrical Data Transfer (EGDT) was developed to ensure the safety of workers and the CoC/CoK of the samples during the collection process. This device was designed for achieving both mobility and rechargeability. It is categorized into two modes based on its intended users: sample mode and worker mode. Through the sensors, which is positioned in the rear part of device, such as radiation, gyroscope, light, temperature, humidity and proximity sensors, it can be easily achievable various environmental information in real-time. Additionally, GPS information can also be received, allowing for responsiveness to various hazardous scenarios. Moreover, the OLED display positioned on the front gives us for checking device information such as the current status of the device such as the battery level, the connectivity of wifi, and etc. Finally, an alarm function was integrated to enable rapid awareness during emergency situations. These functions can be updated and modified through Arduino-based firmware, and both the device and the information collected through it can be remotely controlled via custom software. Based on the presented design conditions, a prototype was developed and field assessments were conducted, yielding results within an acceptable margin of error for various scenarios. Through the application of the EGDT developed in this study to the sample collection process for nuclear activity verification purposes, it is expected to achieve a stable maintenance of CoC/CoK through more accurate information transmission and reception.
        470.
        2023.11 구독 인증기관·개인회원 무료
        Any type of nuclear arms control or disarmament agreement requires some form of verification measure. Existing nuclear arms control treaties drew upon previous agreements such as the INF treaty, START, and IAEA nuclear safeguards inspections. However, previous treaties focused on limiting specific types of nuclear weapons and their delivery vehicles or reducing the total number of nuclear weapons rather than eliminating the nuclear enterprise as a whole. A potential nuclear disarmament verification treaty or agreement will depend on the geopolitical environment of the time as well as the national policies and priorities of each signatory state. Although research on the gradual reduction and eventual elimination of nuclear weapons is still ongoing, several states have cooperated to conduct experiments, exercises, and simulations on the procedures and technologies required for nuclear disarmament verification. Three of these efforts are the LETTERPRESS simulation conducted by the Quadrilateral Nuclear Verification Partnership (QUAD), NuDiVe Exercise conducted by the International Partnership for Nuclear Disarmament Verification (IPNDV), and the Menzingen experiment organized by the UNIDIR in partnership with the Swiss Armed Forces, Spiez Laboratory, Princeton University’s Program on Science and Global Security, and the Open Nuclear Network. These contain aspects for the development of a potential nuclear disarmament verification. The LETTERPRESS exercise conducted in 2017 tested potential activities and equipment inspectors might utilize in a nuclear weapon facility. The IPNDV NuDiVe exercises conducted in 2021 and 2022 tested the activities and equipment required for the verified dismantlement of a warhead within a dismantlement facility. Finally, the Menzingen experiment conducted in 2023 tested the practical procedures for the verification of a nuclear weapon’s absence at a storage site. This paper will analyze the three cases to offer considerations on the procedures and technologies future nuclear disarmament verification might include.
        471.
        2023.11 구독 인증기관·개인회원 무료
        Arms control treaties during the Cold War generally used national technical means (NTM) to verify treaty compliance. This was because signatory states refused to agree on on-site inspection (OSI) measures since it would require some level of intrusion. Efforts on nuclear arms control such as the Limited Test Ban Treaty (LTBT) or Strategic Arms Limitation Talks (SALT) initially included some form of OSI but could not continue due to refusal from signatory states. The Intermediate-Range Nuclear Force (INF) treaty concluded between the US and the Soviet Union in 1978 was significant since both states agreed on a highly intrusive verification measure. The Strategic Arms Reduction Treaty (START) and the new START also called for OSI measures similar to the INF. Alongside reducing a significant number of nuclear warheads and limiting specific types of nuclear warhead delivery vehicles, these treaties also provided basic models for conducting on-site inspection (OSI). OSI measures primarily rely on the political agreement between signatory states. However, the structure, types of inspections, number of inspections allowed, and technology/equipment used in each of the regimes also differ according to the objectives of each treaty. The INF treaty and START are salient cases as basic models for current nuclear disarmament verification research. Thus, this paper will conduct a case study on the procedures and mechanisms required for nuclear arms control verification in terms of OSI. Using the implications drawn from the INF treaty and START, this paper offers considerations for a potential nuclear disarmament verification.
        472.
        2023.11 구독 인증기관·개인회원 무료
        Safeguards systems and measures are determined through diversion scenario analysis based on the facility design information submitted to the IAEA when a new nuclear facility is introduced. While the concept of safeguards-by-design (SBD), which considers the safeguards from the design phase for a facility operator to minimize unplanned changes or disruption to facility operations as well as for the IAEA to increase the efficiency and effectiveness in safeguards implementation, has been emphasized for more than a decade, there is no practical tool or guidance on how to apply it. In this study, we develop a diversion path analysis tool and introduce how to apply SBD using it. A diversion path analysis tool was developed based on the elements that constitute diversion and the algorithm generated based on the initial information of facility and nuclear material flow. The results of utilizing the analysis tool depending on a different level of facility information and the safeguards set-ups were compared through examples. Taking a typical light water reactor as an example, the test analyzed the automatic generation of dedicated routes, configuration of safeguards measures, and diversion path analysis. Through this, the application and limitations of the analysis tool are discussed, and ideas for utilization according to the SBD concept and necessary regulatory guidance are proposed. The results of this study are expected to be directly utilized to domestic nuclear control during the regulation process for a construction of new nuclear power systems, and furthermore, to enhance national credibility in the engagement with the IAEA for implementation of safeguards.
        473.
        2023.11 구독 인증기관·개인회원 무료
        Emerging technologies are innovative technologies currently under development or in the early stages of introduction. These technologies have the potential to impact a wide range of industries and sectors significantly and may, therefore, be subject to export controls. The list of emerging technologies subject to export controls varies from country to country and constantly changes as new technologies are developed. For example, the U.S., EU, and South Korea have responded to these changes by adding software and technologies related to artificial intelligence and machine learning to their export control lists. Nevertheless, export control of emerging technologies still presents challenges and limitations. The rapid pace of technological advancement makes it difficult for export control regulations to keep up. For export control purposes, international cooperation on information sharing and control methods is necessary for most countries to control similar items. Several new technologies in the nuclear field may be subject to export controls. These technologies include advanced reactors, nuclear fuel cycle technologies, and nuclear waste management technologies. Small modular reactors (SMRs) and fourth-generation reactors are being developed as advanced technologies, and new technologies are being developed to improve the nuclear fuel cycle. There is also active development of technologies for space applications utilizing nuclear reactors, such as the Nuclear Thermal Propulsion System and the Nuclear Electric Propulsion System. As these technologies may include new systems and items not in existing export control, they may pose a proliferation risk or may include software design know-how for advanced materials, it is necessary to consider whether and how they should be subject to export control to prevent nuclear proliferation. Overall, export controls are an essential issue in the emerging technology and nuclear energy sectors. Countries are moving toward strengthening regulations and international cooperation to overcome these challenges and ensure safe technology transfer, and South Korea should actively participate and lead this trend.
        474.
        2023.11 구독 인증기관·개인회원 무료
        In recent times, drone technology has been rapidly advancing and becoming increasingly popular. Furthermore, there has been an increase in the number of crimes and terrorism cases targeting national facilities using drones. This study aims to categorize the types of drone threats that could pose future risks to nuclear power plants. For this study, we are investigating domestic and foreign drone terrorism cases and identifying the specifications of drones used. It has been confirmed that products from Chinese DJI companies have frequently appeared as commercial drones used in terrorism. This suggests that conversion of general commercial drones into weapons can be effectively utilized for terrorist activities. There is an elevated risk of terrorism involving multiple small drones. Nuclear power plants must also devise protective measures against a large influx of drones. Additionally, it is predicted that North Korea is developing drones equipped with return technology through GPS-based autonomous mission flights. North Korea’s drones are presumed to have been converted from Chinese drones (SKY-09P, UV10CAM, etc.). According to the analysis based on the weight and size of the drone, drones weighting less than 150 kg and wingspan of less than 3 m are used for terrorism. To effectively detect drones, it is necessary to implement measures such as integrating and deploying various equipment to compensate for equipment limitations (radio waves, radar, video, sound, etc.). In the case of long-distance flight, a number of fixed-wing drones capable of autonomous mission flight and long-distance flight were used. North Korea’s drones use GPS-based autonomous mission flights, so it is necessary to prepare drones that do not transmit RF signals to detect them. Both RF signal detection and GPS jamming should be carried out, with GPS jamming taking precedence, even in the case of fixedwing drones. The results of this study could contribute to enhancing the level of physical protection of nuclear power plants.
        475.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We produced an activated carbon using sodium-lignosulfonate, in which we investigated how the sodium salt in lignin served as the activating agent during heat treatment. Our process resulted in a product with a high specific surface area of 1324 m2/ g at 800 °C and microporous structure. During the activation process, we observed the consumption of carbon due to the dehydration reaction of NaOH and the reduction of Na2CO3 to metallic Na, which created pores through oxidation/ reduction reactions. The intercalation of metallic Na between the lattices at high temperatures formed additional pores and increased the specific surface area. Our proposed mechanism holds promise for enhancing the control of the microstructure and porosity of activated carbons through the thermal treatment of biomass.
        4,000원
        477.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper proposes the optimal molecular weight for a petroleum-based binder pitch to enhance the density and strength of the prepared graphite block. The effect of the molecular weight on the binder properties, which was quantified using solvent fractionation, was considered based on the evaluation of the coking and viscosity characteristics. The affinity of the pitch to coke influenced the carbonization yield of the block, and the proportion of closed pores was reduced via the use of a highaffinity binder pitch. In addition, the viscosity was found to influence the uniformity of the coke and pitch dispersions, and numerous open pores were formed in the graphite block under high-viscosity conditions. In terms of the molecular weight, a reduction in the content of the insoluble 1-methyl-2-pyrrolidone (NMP) fraction, which was the heaviest fraction present in the pitch, was found to reduce the affinity of the binder to coke while increasing its viscosity. Therefore, the density and strength of the prepared graphite block were reduced upon increasing the insoluble NMP content of the binder pitch. Consequently, it was necessary to control the content of this fraction within < 13.81 wt% to obtain high-density and high-strength graphite blocks.
        4,000원
        479.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The development of food packaging materials with mechanical and antimicrobial properties is still a major challenge. N, P-doped carbons (NPCs) were synthesized. Poly(butylene adipate-co-terephthalate) (PBAT), which has an adverse effect on the environment and affects petroleum resources, has been commonly used for applications as food packaging. The development of PBAT composites reinforced with NPCs and studies on their structure and antimicrobial properties are presented in this study. The composite materials in the PBAT/NPCs were processed by solution casting. The plasticizing properties of NPCs enhanced the mechanical strength of composites produced of PBAT and NPCs. The thermal properties of PBAT composites were enhanced with addition of NPCs, according to thermogravimetric analysis (TGA). After reinforcement, PBAT/NPCs composites became more hydrophobic, according to contact angle measurements. In studies against S. aureus and E. coli food-borne pathogenic bacteria, the obtained composites show noticeably improved antimicrobial activity. The composite materials, according to the results of PBAT and NPCs may be a good choice for packing for food that prevents microorganisms.
        4,000원
        480.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cholesterol is prone to oxidation, which results in the formation of cholesterol oxidation products (COPs). This occurs because it is a monounsaturated lipid with a double bond on C-5 position. Cholesterol in foods is mostly non-enzymatically oxidized by reactive oxygen species (ROS)-mediated auto-oxidative reaction. The COPs are found in many common foods of animal-origin and are formed during their manufacture process. The formation of COPs is mainly related to the temperature and the heating time the food is processed, storage condition, light exposure and level of activator present such as free radical. The level of COPs in processed foods could reach up to 1-10 % of the total cholesterol depending on the foods. The most predominant COPs in foods including meat, eggs, dairy products as well as other foods of animal origin were 7-ketocholesterol, 7 α-hydroxycholesterol (7α-OH), 7β-hydroxycholesterol (7β-OH), 5,6α-epoxycholesterol (5,6α -EP), 5,6β-epoxycholesterol (5,6β-EP), 25-hydoxycholesterol (25-OH), 20-hydroxycholesterol (20-OH) and cholestanetriol (triol). They are mainly formed non-enzymatically by cholesterol autoxidation. The COPs are known to be potentially more hazardous to human health than pure cholesterol. The procedure to block cholesterol oxidation in foods should be similar to that of lipid oxidation inhibition since both cholesterol and lipid oxidation go through the same free radical mechanism. The formation of COPs in foods can be stopped by decreasing heating time and temperature, controlling storage condition as well as adding antioxidants into food products. This review aims to present, discuss and respond to articles and studies published on the topics of the formation and inhibition of COPs in foods and key factors that might affect cholesterol oxidation. This review may be used as a basic guide to control the formation of COPs in the food industry.
        4,500원