Mamestra brassicae nucleopolyhedrovirus-K1 (MabrNPV-K1) was isolated from naturally infected Mamestra brassicae (Lepidoptera: Noctuidae) larvae in Korea. Restriction endonuclease fragment analysis using EcoRI, PstI, and BamHI estimated that the total genome size of MabrNPV-K1 is about 150 Kb. The full genome sequences of MabrNPV-K1 were determined, analyzed and compared to those of other baculoviruses. The MabrNPV-K1 genome consisted of 152,471 bp and had an overall G + C contents of 39.90 %. Computer-assisted analysis predicted 159 open reading frames (ORFs) of 150 nucleotides or greater that showed minimal overlap. The gene content and arrangement in MabrNPV-K1 were most similar to those of Mamestra configurata nucleopolyhedrovirus-B (MacoNPV-B), including three polh, p10 and lef-8 gene homologues. The MabrNPV-K1 genome contains four homologous repeat regions (hr1,hr2,hr3,hr4) that account for 3.1% of the genome. The genomic positions of MabrNPV-K1 regions hr1– hr4 are conserved with the genomic positions of MacoNPV-B hr1–hr4. This indicates that the position of MabrNPV–K1 hrs is conserved with regard to both the upstream and downstream genes. Given that hrs share higher similarity within a virus strain than any hrs between species, this evidence further indicates that hrs play a fundamental role in viral life cycle and replication process appears to be tightly linked to functional conservation. The dot plot analysis, percent identity of the gene homologues and a phylogenetic analysis suggested that MabrNPV-K1 is a Group II NPV that is closely related to MacoNPV but with a distinct genomic organization.
The Classical Swine Fever Virus (CSFV) is a member of the Pestivirus genus of the Flaviviridae. The polyprotein composed of eight nonstructural and four structural proteins (nucleocapsid protein C and three envelope glycoprotein E0, E1 and E2). E2, the most immunogenic of the CSFV glycoproteins, induces a protective immune response in swine. The objective of this study was to enhance production of E2 protein by fusion with partial polyhedrin of nucleopolyhedrovirus in insect cells. We generated various E2 form by fusion with different combinations of the partial polyhedrin and deletion of the C-terminal transmembrane region (TMR). Expression of the E2 protein was identified by SDS-PAGE and Western blot analysis using anti-CSFV E2 monoclonal antibodies. The fusion expression of an E2 protein with the partial polyhedrin markedly increased expression levels. Also, expression of E2 proteinlacking TMR region was higher than that of intact E2 protein. As a result, the fusion expression of E2 protein lacking the C-terminal TMR with partial polyhedrin was significantly increased in insect cells. These suggest that the fusion of target foreign protein with partial polyhedrin could enhance significantly the production of target protein.
In agricultural fields, the entomopathogenic fungal species have been investigated for their potential as the biological control agents due to their role of natural enemies for insects. To address the requirements of a potential South Korea based biocontrol effort using entomopathogenic fungi, we investigated the occurrence of various entomopathogenic fungi in 1080 soil samples representing from various area and locations in South Korea. Entomopathogenic fungi were isolated from soils using semiselective medium SDA-D50 contained saboraund dextrose agar, 50 ug/ml dodine, 100 ug/ml chloramphenicol and 50 ug/ml streptomycin. The isolated putative fungi were identified by the determination of internal transcribed spacer (ITS) region sequences of the nuclear ribosomal analysis. As a result, entomopathogenic fungi were found to occur in 30.8% of the soil samples studied. The most abundant species were Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metschn.) Sorok. Isolates of B. brongniartii, Cordyceps sp., Lecanicillium sp., Isaria sp. and Tolypocladium cylindrosporum were also found. The occurrence of entomopathogenic fungi was analyzed by the area and soil types. These positive entomopathogenic fungi may have potential against variety pests in agriculture and forest
Pyrifluquinazon, as a quinazinalone chemical group, based on a new mode of biological activity. It is reported that mode of action is modifies insect behavior, rapidly stopping feeding such that insects starve to death. Time-release feature and mortality effect on M. persicae using different pyrifluquinazon nano type and non-nano type were compared. Pyrifluquinazon nano type was formulated with different molecular weight and density of used chitosan (CS 30000 0.1% and CS 3000 0.3%). In the CS 30,000 0.1%, the mortality was weakly occurred at early time, but steadily increased after 4days. Finally, we confirmed more than 70% mortality as a peak at 16days. In CS 3000 0.3%, the mortality showed about 70% until 18days as a effective controlled release. Also, We examine time-release feature and mortality effect on M. persicae according to the different pyrifluquinazon nano type(CS 30000 0.1% and CS 3000 0.3%) of concentrations. The CS 30000 0.1% bioassay results of different concentration were showed that the highest concentration(100ppm) was measured better mortality than other concentration at 0 day, but cannot confirm different effect about dissimilar concentration. However, increasing rates of M. persicae were low as treatment concentrate was high. In CS 3000 0.3% 100ppm concentration bioassay result, aphid mortality reached peak at 24 days and increasing rate also low. Additionally, for the comparing of bioassay and feeding behavior of M. persicae against pyrifluquinazon nano types and non-nano type, EPG technique was carried out. In case of non nano type, feeding inhibition efficacy was showed during 4 days after treatment, but appeared similar level with control after 10days. In CS 3000 0.3% 50ppm, residual efficacy was specially showed until 28days after treatment whereas treatments with CS 30000 0.1% were similar to the control after 22days. These result show that the change of feedinng behavior and motrality of M. persicae is correlated with the change of nano type or non nano type of pyrifluquinazon.
본 연구에서는 azoxymethane (AOM)과 dextran sodium sulfate (DSS)로 유도된 대장 발암과정에 대한 셀레늄의 방어 효과를 조사하였다. 셀레늄 결핍(0.02 ppm Se), 정상(0.1 ppm Se), 과다(0.5 ppm Se)사료를 12주간 식이로 급여하여 혈액검사와 대장암 발생의 초기단계인 aberrant crypt foci (ACF)수를 측정했으며, 암 발생율을 조사하였다. ICP-AES 를 사용하여 간의 셀레늄 농도를 측정하였으며, 또한 셀레늄포함 항산화효소인 glutathione peroxidase (GPx) 활성을 알아보았다. 또한 TUNEL assay와 PCNA, β-catenin에 대한 면역조직 염색을 수행하였다. ACF 수 및 종양 발생률에 있어서, 셀레늄과다사료를 급여한 군이 정상셀레늄사료를 급여한 군보다 낮았으며, 셀레늄결핍사료를 급여한 군은 오히려 ACF 수 및 종양 발생률이 높았다. GPx 활성은 셀레늄의 섭취가 과다한 군에서 높게 나타났으며, 이 때, TUNEL 에서 apoptotic positive cell이 증가하는 것을 확인했다. 또 한 셀레늄의 섭취가 과다한 군에서 PCNA와 β-catenin의 발현이 감소됨을 볼 수 있었다. 본 마우스 모델실험에서 셀레늄은 여러 기전에 의해 대장암 발생을 억제할 수 있을 것으로 사료된다.
We examined the effect of Bulnesia sarmienti (BS) water extract on hyperlipidemia induced by a high-fat diet. ICR mice were fed a high-fat diet ad libitum for four weeks. Simultaneously, BS water extract was administered intragastrically at 0 mg/kg (control), 30 mg/kg, or 300 mg/kg once daily for four weeks. Male ICR mice were divided into four groups; normal control group (NC), high-fat diet+vehicle treatment group (HF), high-fat diet+BS of 30 mg/kg treatment group (HF+BS30), and high-fat diet+BS of 300 mg/kg treatment group (HF+BS300). The levels of serum biochemical parameters and histological appearances were evaluated. After four weeks, body weight gain and serum levels of triglycerides, total cholesterol, and Low-density lipoprotein (LDL)-cholesterol were significantly higher in the HF group than in the normal control group. Together, serum High-density lipoprotein (HDL)-cholesterol level in the HF group was lower than that in the normal control group. However, treatment with BS resulted in significantly reduced body weight gain and levels of serum triglycerides, total cholesterol, and LDL-choleterol. In addition, serum HDL-cholesterol level in the BS treatment group was significantly elevated, compared to that of the HF group. Histopathological evaluation of the liver showed fat accumulation and swelling of hepatocytes in the high-fat diet group; these abnormalities were ameliorated by treatment with BS. These results suggest that treatment with BS water extract resulted in dose-dependent prevention and mitigation of high-fat diet-induced hyperlipidemia.
The present study investigated the role of ERK in the onset of mechanical and cold allodynia in a rat model of compression of the trigeminal ganglion by examining changes in the air-puff thresholds and number of scratches following the intracisternal injection of PD98059, a MEK inhibitor. Male Sprague Dawley rats weighing between 250 and 260 g were used. Under anesthesia, the rats were mounted onto a stereotaxic frame and received 4% agar (10μℓ) solution to compress the trigeminal ganglion. In the control group, the animals were given a sham operation without the application of agar. Changes in behavior were examined at 3 days before and at 3, 7, 10, 14, 17, 21, 24, 30, and 40 days after surgery. Compression of the trigeminal ganglion significantly decreased the air-puff thresholds. Mechanical allodynia was established within 3 days and persisted over postoperative day 24. To evaluate cold allodynia, nociceptive scratching behavior was monitored after acetone application on the vibrissa pad of the rats. Compression of the trigeminal ganglion was found to produce significant cold allodynia, which persisted for more than 40 days after surgery. On postoperative day 14, the intracisternal administration of 1 μg or 10 μg of PD98059 in the rat model significantly decreased the air-puff thresholds on both the ipsilateral and contralateral side. The intracisternal administration of 10 μg of PD98059 also significantly alleviated the cold allodynia, compared with the vehicle-treated group. These results suggest that central ERK plays an important role in the development of mechanical and cold allodynia in rats with compression of the trigeminal ganglion and that a targeted blockade of this pathway is a potential future treatment strategy for trigeminal neuralgia-like nociception.
Erythropoietin (EPO), a glycoprotein hormone produced from primarily cells of the peritubular capillary endothelium of the kidney, is responsible for the regulation of red blood cell production. We have been investigating the roles of glycosylation site added in the biosynthesis and function of recombinant protein. In this study, we analyzed by immunohistochemical methods adaptive mechanisms to excessive erythrocytosis in transgenic (tg) mice expressing dimeric human erythropoietin (dHuEPO) gene. Splenomegaly was observed over 11 21 times in the tg mice. The 2,672 candidate spleen‐gderived genes were identified through the microarray analysis method, and decreased genes were higher than increased genes in the spleen. The specific proteins in the increased and decreased genes were analyzed by immunohistochemical methods. Our results demonstrate that problems of abnormal splenomegaly would solve in tg mice overexpressing dHuEPO gene.