KHNP is conducting research to decommission Wolsong Unit 1 Calandria. Establishment of preparation and dismantlement processes, conceptual design of equipment and temporary radiation protection facilities, and waste management are being established. In particular, the ALARA plan is to be established by performing exposure dose evaluation for workers. This study aims to deal with the methodology of evaluating exposure dose based on the calandria dismantling process. The preparation process consists of bringing in and installing tooling and devices, and removing interference facilities to secure work space. The main source term for the preparation process is the calandria structure itself and crud of feeders. In the case of the dismantlement process, a structure with a shape that changes according to the process was modeled as a radiation source. It is intended to estimate the exposure dose by selecting the number of workers, time, and location required for each process in the radiation field evaluated according to the preparation and dismantlement process. In addition, it is also conducting an evaluation of the impact on dust generated by cutting operations and the human impact of C-14, H-3, which are specialized nuclides for heavy water reactors. KHNP is conducting an exposure dose evaluation based on a process based on the preparation and dismantlement process for decommissioning Calandria through computation code analysis. If additional worker protection measures are deemed necessary through dose evaluation according to this methodology, the process is improved to prepare for the dismantling of worker safety priorities.
Heavy water primary system decontamination technology is essential to reduce worker exposure and improve safety during maintenance and decommissioning of nuclear facilities. Advanced decontamination technology development aims to secure controlled decontamination technologies that can reduce the cost of radiation exposure and dramatically reduce the amount of secondary waste generated when decontaminating large equipment and large-area facilities. We conducted a study to identify candidate corrosion inhibitors through the literature and analyze the degree of corrosion of carbon steel samples. Countries with advanced nuclear technology have developed chemical decontamination technology for the entire nuclear power generation system and applied it to the dismantling and maintenance of nuclear power plants. In the decontamination process, the corrosion oxide film must be removed. If the base metal is corroded by the decontaminant in this process, additional secondary waste is generated and treatment costs increase. Therefore, it is necessary to develop a corrosion inhibitor that inhibits the corrosion of the carbon steel base metal in the decontamination process to generate a secondary waste liquid that is favorable for waste reduction and treatment. In this presentation, a study was conducted to analyze the extent of corrosion on a carbon steel base material and identify candidate materials for corrosion inhibition testing. Samples were analyzed using optical microscopy and EPMA analysis to determine the thickness of the corroded oxide film. EPMA analysis also allowed us to map the elemental distribution of the carbon steel corrosion layer, which we plan to quantify in the future. The candidate materials for organic-based corrosion inhibitor were also selected based on their inhibition mechanism; having high electronegative elements for coordinate covalent bonding at metal surface and hydrophobic nonpolar group for preventing access of corrosive substances.The selection of candidate materials for corrosion inhibition testing was based on the mechanism of the corrosion inhibitor. Organic-based corrosion inhibitors are adsorbed by donor-acceptor interactions between metal surfaces and highly electronegative elements. Corrosion can also be inhibited by arranging hydrophobic nonpolar groups on metal surfaces in the solution direction to prevent access of corrosive substances.
The domestic Pressurized Heavy Water Reactor (PWHR) nuclear power plant, Wolsong Unit 1, was permanently shut down on December 24, 2019. However, research on decommissioning has mainly focused on Pressurized Water Reactors (PWRs), with a notable absence of both domestic and international experience in the decommissioning of PHWRs. If proper business management such as radiation safety and waste is not performed, it can lead to increased business risks and costs in decommissioning. Therefore, the assessment of waste volume and cost, which provide fundamental data for the nuclear decommissioning process, is a crucial technical requirement before initiating the actual decommissioning of Wolsong Unit 1. Decommissioning radiation-contaminated structures and facilities presents significant challenges due to high radiation levels, making it difficult for workers to access these areas. Therefore, technology development should precede decommissioning process assessments and safety evaluations, facilitating the derivation of optimal decommissioning procedures and ensuring worker safety while enhancing the efficiency of decommissioning operations. In this study, we have developed a program to estimate decommissioning waste amounts for PHWRs, building upon prior research on PWR decommissioning projects while accounting for the specific design characteristics of PHWRs. To evaluate the amount of radioactive waste generated during decommissioning, we considered the characteristics of radioactive waste, disposal methods, packaging container specifications, and the criteria for the transfer of radioactive waste to disposal operators. Based on the derived algorithm, we conducted a detailed design and implemented the program. The proposed program is based on 3D modeling of the decommissioning components and the calculation of the Work Difficulty Factor (WDF), which is used to determine the time weighting factors for each task. Program users can select the cutting and packaging conditions for decommissioning components, estimate waste amount based on the chosen decommissioning method, and calculate costs using time weighting factors. It can be applied not only to PHWRs, but also to PWRs and non-nuclear fields, providing a flexible tool for optimizing decommissioning process.
Nuclear facilities present the important task related to the migration and retention of radioactive contaminants such as cesium (Cs), strontium (Sr), and cobalt (Co) for unexpected events in various environmental conditions. The distribution coefficient (Kd) is important factor for understanding these contaminants mobility, influenced by environmental variables. This study focusses the prediction of Kd values for radionuclides within solid phase groups through the application of machine-learning models trained on experimental data and open source data from Japan atomic energy agency. Three machine-learning models, such as the convolutional neural network, artificial neural network, and random forest, were trained for prediction model of the distribution coefficient (Kd). Fourteen input variables drawn from the database and experimental data, including parameters such as initial concentration, solid-phase characteristics, and solution conditions, served as the basis for model training. To enhance model performance, these variables underwent preprocessing steps involving normalization and log transformation. The performances of the models were evaluated using the coefficient of determination. These results showed that the environmental media, initial radionuclide concentration, solid phase properties, and solution conditions were significant variables for Kd prediction. These models accurately predict Kd values for different environmental conditions and can assess the environmental risk by analyzing the behavior of radionuclides in solid phase groups. The results of this study can improve safety analyses and longterm risk assessments related to waste disposal and prevent potential hazards and sources of contamination in the surrounding environment.
Structural stability of a waste form can be provided by the waste form itself (steel components, etc.), by processing the waste to a stable form (solidification, etc.), or by emplacing the waste in a container or structure that provides stability (HICs or engineered structure, etc.). The waste or container should be resistant to degradation caused by radiation effects. In accordance with the requirements for the domestic waste acceptance criteria, irradiation testing of solidified waste forms containing spent resin should be conducted on specimens exposed to a dose of 1.0E+6 Gy and other material 1.0E+7 Gy. Expected cumulative dose over 300 years is about 1.770E+6 Gy for spent resin and 0.770E+6 Gy for dried concentrated waste generated from NPPs generally. According to NRC Waste Form Technical Position, to ensure that spent resins will not undergo adverse degradation effects from radiation, resins should not be generated having loadings that will produce greater than 1E+6 Gy total accumulated dose. If it necessary to load resins higher than 1E+6 Gy, it should be demonstrated that the resin will not undergo radiation degradation at the proposed higher loading. This is the recommended maximum activity level for organic resins based on evidence that while a measurable amount of damage to the resin will occur at 1E+6 Gy, the amount of damage will have negligible effect on disposal site safety. Cementitious materials are not affected by gamma radiation to in excess of 1E+6 Gy. Therefore, for cement-stabilized waste forms, irradiation qualification testing need not be conducted unless the waste forms contain spent resins or other organic media or the expected cumulative dose on waste forms containing other materials is greater than 1E+7 Gy. Testing should be performed on specimens exposed to IE+6 Gy or the expected maximum dose greater than 1E+6 Gy for waste forms that contain ion exchange resins or other organic media or the expected maximum dose greater than 1E+7 Gy for other waste forms. This is suggestion as a review result that requirement for irradiation testing of solidified waste forms has something to be revise in detail and definitively.
The increasing accumulation of spent nuclear fuel has raised interest in High-Level Waste (HLW) repositories. For example, Sweden is under construction of the KBS-3 repository. To ensure the safety of such HLW repository, various countries have been developing assessment models. In the Republic of Korea, the Korea Atomic Energy Research Institute has been developing on the AKRS model. However, traditional safety assessment models have not considered the fracture growth in the far-field host rock as a function of time. As repository safety assessments guarantee safety for million years, sustained stress naturally leads to the progressive growth of fractures as time goes on. Therefore, it becomes essential to account for fracture growth in the surrounding host rock. To address this, our study proposes a new coupling scheme between the Fracture growth model and the radionuclide transport model. That coupling scheme consists of the Cubic Law model as a fracture growth function and the GoldSim code which is a commercial software for radionuclide transport calculations. The model that adopting such fracture growth functions showed an increase of up to 15% in the release of radionuclide compared to traditional assessment models. our observations indicated that crack growth as a function of time led to an increase in hydraulic conductivity that allowed more radionuclide transport. Notably, these findings show the significance of adopting fracture growth models as a critical element in evaluating the safety of nuclear waste repositories.
The development of advanced nuclear facilities is progressing rapidly around the world. Newly designed facilities have differences in structure and operation from existing nuclear facilities, so Safeguards by Design (SBD), which applies safeguards at the design stage, is important. To this end, designers should consider the safeguardability of nuclear facilities when designing the system. Safeguardability represents a measure of the ease of safeguards, and representative evaluation methodologies are Facility Safeguardability Analysis (FSA) and Safeguardability Check-List (SCL). Those two have limitations in the quantification of safeguardability. Accordingly, in this study, the Safeguardability Evaluation Method (SEM), which has clear evaluation criteria based on engineering formulas, was developed. Nuclear Material Accountancy (NMA), a key element of Safeguards, requires the Material Balance Area (MBA) of the target facility and performs Material Balance Evaluation (MBE) based on the quantitative evaluation of nuclear materials entering or leaving the MBA. In this study, about 10 factors related to NMA were developed, including MBA, Key Measurement Point (KMP), Uncertainty of a detector, Radiation signatures, and MUF (Material Unaccounted For). For example, one of the factors, MUF is used in MBA to determine diversion through analysis of unquantified nuclear materials and refers to the difference between Book Inventory and Physical Inventory, as well as errors occurring during the process in bulk facilities, errors in measurement, or intentional use of nuclear materials. This occurs in situations such as attempted diversion, and accurate MUF evaluation is essential for solid Safeguards implementation. MUF can be evaluated using the following formula (MUF=(PB+X-Y)-PE). The IAEA’s Safeguards achievement conditions (MUF < SQ) should be met. Considering this, MUF-related factors were developed as follows. ( = 1 − ) In this way, about 10 factors were developed and described in the text. This factors is expected to serve as an important factor in evaluating the safeguardability of NMA, and in the future, safeguardability factors related to Containment & Surveillance (C&S) and Design Information Verification (DIV) will be additionally developed to conduct a comprehensive safeguardability evaluation of the target facility. This methodology can significantly enhance safeguardability during the design stage of nuclear facilities.
As the demand for nuclear power increases as a means to achieve carbon neutrality, concerns about nuclear proliferation have also grown. Consequently, significant researches have conducted to enhance nuclear non-proliferation resistance. Among these research, nuclear material attractiveness is a methodology used to evaluate how appealing a particular material is for potential use in nuclear weapons, based on the characteristics of that material. Existing nuclear material attractiveness assessments focused on materials like U, Pu, and TRU, which could be directly used in the production of nuclear weapons. However, these assessments did not consider how the properties of nuclear materials change throughout the nuclear fuel cycle, with each facility process. This study assumed a scenario of the nuclear fuel cycle of graphite reduction reactors and analyzed including enrichment facilities and PUREX. This study used the FOM (Figure-Of-Merit) method developed by LANL (Los Alamos National Laboratory) for evaluating the nuclear material attractiveness. The FOM formula consists of three parameters such as critical mass, heat content, and dose The critical mass of targe materials and the dose evaluation were conducted using the Monte Carlo N-Particle code. The heat content was calculated using the ORIGEN code embedded in the Scale code. In particular, if U-238 is dominant in the facility’s materials, such as mining and refining facilities, and critical mass evaluation is unpractical. Therefore, 1SQ (Significant Quantity) of that uranium was assumed as the critical mass value for the FOM evaluation, even though 1SQ is not identical to the critical mass As a result of this study, the attractiveness of Pu produced by PUREX among all nuclear fuel cycle facilities was 2.7616, which was the most attractive to be diverted to nuclear weapons. Through this study, it was shown that the proliferation risk of the nuclear facilities in the nuclear fuel cycle and risk of diversion among those facilities.
Kori unit 1, the first PWR (Pressurized Water Reactor) in Korea, was permanent shut down in 2017. In Korea, according to the Nuclear Safety Act, the FDP (Final Decommissioning Plan) must be submitted within 5 years of permanent shutdown. According to NSSC Notice, the types, volumes, and radioactivity of solid radioactive wastes should be included in FDP chapter 9, Radioactive Waste Management, Therefore, in this study, the types depending on generation characteristics and radiological characterization methods and process of solid radioactive waste were analyzed. Solid radioactive waste depending on the characteristics of the generation was classified into reactor vessel and reactor vessel internal, large components, small metals, spent nuclear fuel storage racks, insulation, wires, concrete debris, scattering concrete, asbestos, mixed waste, soil, spent resins and filters, and dry active waste. Radiological characterization of solid radioactive waste is performed to determine the characteristics of radioactive contamination, including the type and concentration of radionuclides. It is necessary to ensure the representativeness of the sample for the structures, systems and components to be evaluated and to apply appropriate evaluation methods and procedures according to the structure, material and type of contamination. Therefore, the radiological characterization is divided into concrete and structures, systems and components, and reactor vessel, reactor vessel internal and bioshield concrete. In this study, the types depending on generation characteristics and radiological characterization methods and process of solid radioactive waste were analyzed. The results of this study can be used as a basis for the preparation of the FDP for the Kori unit 1.
Radioactive waste generated during nuclear power plant decommissioning is classified as radioactive waste before the concentration is identified, but more than 90% of the amount generated is at a level that can be by clearance. However, due to a problem in the analysis procedure, the analysis is not carried out at the place of on-site but is transported to an external institution to identify concentration, which implies a problem of human error because 100% manual. As a way to solve this problem, research is underway to develop a mobile radioactive waste nuclide analysis facility. The mobile radionuclide analysis facility consists of a preparation room, a sample storage room, a measurement room, a pretreatment room, and a waste storage room, and is connected to an external ventilation facility. In addition, since the automation module is built-in from the sample pre-threatening step to the separation step, safety can be improved and rapid analysis can be performed by being located in the decommissioning site. As an initial study for the introduction of a mobile nuclide analysis facility, Visiplan, a preliminary external exposure evaluation code, was used to derive the analysis workload by a single process and evaluate the exposure dose of workers. Based on this, as a follow-up study, the amount of analysis work according to the continuous process and the exposure dose of workers were evaluated. As a result of the evaluation, the Regulatory dose limit was satisfied, and in future studies, internal and external exposure doses were evaluated in consideration of the route of movement, and it is intended to be used as basic data in the field introduction process.
According to IAEA PRIS, there is no record of dismantling commercial heavy water reactors among 57 heavy water reactors around the world. In Canada, which has the largest number of heavy water reactors, three of the 22 commercial heavy water reactors with more than 500 MW are permanently suspended, Gentilly unit 2 (2012), Pickering unit 2 (2007), and Pickering unit 3 (2008), all of which chose a delayed decommissioning strategy. On the other hand, Wolsong unit 1, which will be the world’s first heavy water reactor to be dismantled commercially, will be immediately carried out as a decommissioning strategy. KHNP has established various cooperation systems with advanced companies and international organizations related to overseas NPP decommission and is actively exchanging technologies. Among them, the most important focus is on research cooperation related to COG (CANDU owners Group). The first case is a joint study on Conceptual Calandria Segmentation. Four areas of process, waste management, ALARA, and cost for decommissioning reactors to be submitted to Canadian regulators for approval of Pickering and Gentilly-2’s preliminary decommissioning plan have been evaluated, and research on Wolsong unit 1 is currently underway. The second case is Decommissioning and long-term waste management R&D. Although the technical maturity is low, it studies the common interests of member companies in the decommissioning of heavy water reactor power generation companies and long-term waste management. Robotics for dismantling high-radiation structures, C- 14, H-3 measurement and removal methods, and concrete decontamination technology, which are characterized by heavy water, are being actively studied. KHNP is strengthening international cooperation with COG to prepare for the successful decommissioning of Wolsong unit 1. Based on previous studies by Pickering and Gentilly-2, an evaluation of the decommissioning of Wolsong unit 1 reactor is being conducted. In addition, it is preparing for decommissioning through experience analysis of the pressure tube replacement project.
KHNP is carrying out international technical cooperation and joint research projects to decommission Wolsong unit 1 reactor. Construction data of the reactor structures, experience data on the pressure tube replacement projects, and the operation history were reviewed, and the amount of dismantled waste was calculated and waste was classified through activation analysis. By reviewing COG (CANDU owners Group) technical cooperation and experience in refurbishment projects, KHNP’s unique Wolsong unit 1 reactor decommissioning process was established, and basic design of a number of decommissioning equipment was carried out. Based on this, a study is being conducted to estimate the worker dose of dismantling workers. In order to evaluate the dose of external exposure of dismantling workers, detailed preparation and dismantling processes and radiation field evaluation of activated structures are required. The preparation process can be divided into dismantlement of existing facilities that interfere with the reactor dismantling work and construction of various facilities for the dismantlement process. Through process details, the work time, manpower, and location required for each process will be calculated. Radiation field evaluation takes into account changes in the shape of structures by process and calculates millions of areas by process, so integrated scripts are developed and utilized to integrate input text data. If the radiation field evaluation confirms that the radiation risk of workers is high, mutual feedback will be exchanged so that the process can be improved, such as the installation of temporary shields. The results of this study will be used as basic data for the final decommissioning plan for Wolsong unit 1. By reasonably estimating the dose of workers through computer analysis, safety will be the top priority when decommissioning.
Prevention of radiation hazards to workers and the environment in the event of decommissioning nuclear power plants is a top priority. To this end, it is essential to continuously perform radiation characterization before and during decommissioning. In operating nuclear power plants, various detectors are used depending on the purpose of measurement. Portable detectors used in power plants have excellent portability, but there is a limit to the use of a single measuring device alone to quantify radioactive contamination, nuclide analysis, and ensure representation of measurement results. In foreign countries, gamma-ray visualization detectors are being actively used for operating and decommissioning nuclear power plants. KHNP is also conducting research on the development of gamma-ray visualization detectors for multipurpose field measurement at decommissioning nuclear power plants. It aims to develop detectors capable of visualizing radioactive contamination, analyzing nuclides, estimating radioactivity, and estimating dose rates. To this end, we are developing related software according to the development process by purchasing sensors from H3D, which account for more than 75% of the US gamma-ray visualization detector market. In addition, field tests are planned in the order of Wolsong Unit 1 and Kori Unit 1 with Research reactor in Gongneung-dong in accordance with the progress of development. The detector will be optimized by analyzing the test results according to various gamma radiation field environments. The development detector will be used for various measurement purposes for Kori unit 1 and Wolsong
Wolsong unit 1, the first PHWR (Pressurized Heavy Water Reactor) in Korea, was permanent shut down in 2019. In Korea, according to the Nuclear Safety Act, the FDP (Final Decommissioning Plan) must be submitted within 5 years of permanent shutdown. According to NSSC Notice, the types, volumes, and radioactivity of solid radioactive wastes should be included in FDP chapter 9, Radioactive Waste Management, Therefore, in this study, activation assessment and waste classification of the End shield, which is a major activation component, were conducted. MCNP and ORIGEN-S computer codes were used for the activation assessment of the End shield. Radioactive waste levels were classified according to the cooling period of 0 to 20 years in consideration of the actual start of decommissioning. The End shield consists of Lattice tube, Shielding ball, Sleeve insert, Calandria tube shielding sleeve, and Embedment Ring. Among the components composed for each fuel channel, the neutron flux was calculated for the components whose level was not predicted by preliminary activation assessment, by dividing them into three channel regions: central channel, inter channel, and outer channel. In the case of the shielding ball, the neutron flux was calculated in the area up to 10 cm close to the core and other parts to check the decrease in neutron flux with the distance from the core. The neutron flux calculations showed that the highest neutron flux was calculated at the Sleeve insert, the component closest to the fuel channel. It was found that the neutron flux decreased by about 1/10 to 1/20 as the distance from the core increased by 20 cm. The outer channel was found to have about 30% of the neutron flux of the center channel. It was found that no change in radioactive waste level due to decay occurred during the 0 to 20 years cooling period. In this study, activation assessment and waste classification of End Shield in Wolsong unit 1 was conducted. The results of this study can be used as a basis for the preparation of the FDP for the Wolsong unit 1.
Radioactive contaminants, such as 137Cs, are a significant concern for long-term storage of nuclear waste. Migration and retention of these contaminants in various environmental media can pose a risk to the surrounding environment. The distribution coefficient (Kd) is a critical parameter for assessing the behavior of these contaminants and can introduce significant errors in predicting migration and remediation options. Accurate prediction of Kd values is essential to assess the behavior of radioactive contaminants and to ensure environmental safety. In this study, we present machine learning models based on the Japan Atomic Energy Agency Sorption Database (JAEA-SDB) to predict Kd values for Cs in soils. We used three different machine learning models, namely the random forest (RF), artificial neural network (ANN), and convolutional neural network (CNN), to predict Kd values. The models were trained on 14 input variables from the JAEA-SDB, including factors such as Cs concentration, solid phase properties, and solution conditions which are preprocessed by normalization and log transformation. We evaluated the performance of our models using the coefficient of determination (R2) value. The RF, ANN, and CNN models achieved R2 values of over 0.97, 0.86, and 0.88, respectively. Additionally, we analyzed the variable importance of RF using out-of-bag (OOB) and CNN with an attention module. Our results showed that the initial radionuclide concentration and properties of solid phase were important variables for Kd prediction. Our machine learning models provide accurate predictions of Kd values for different soil conditions. The Kd values predicted by our models can be used to assess the behavior of radioactive contaminants in various environmental media. This can help in predicting the potential migration and retention of contaminants in soils and the selection of appropriate site remediation options. Our study provides a reliable and efficient method for predicting Kd values that can be used in environmental risk assessment and waste management.
LILW disposal repository in Gyeongju, South Korea is considered with a concrete mixture that uses Ordinary Portland Cement (OPC) partially substituted with supplementary cementitious materials (SCMs). The degradation of cementitious materials that result from chemical and physical attacks is a major concern in the safety of radioactive waste disposal. We present a reactive transport model utilized as one of the geochemical simulation approaches for the timescales of concern that range from hundreds to thousands of years. The purpose of this study is to investigate the sensitivity of parameters in concrete disposal systems and to evaluate the influence of various assumptions on the chemical degradation of the systems using a reactive transport model. A reactive transport model in the concrete disposal vault was developed to evaluate the behavior of engineered barriers composed of cementitious materials. The sensitivity analysis was performed using reactive transport models through the coupling between COMSOL and PHREEQC. The databases selected for the analysis are the Thermochimie database presented by ANDRA. Among many variables considered, two variables that can highly affect chemical degradation were selected for detailed sensitivity analysis for dealing with uncertainties. This is important because the chemical degradation mechanism is generally sensitive to precipitation and diffusion coefficient. The first factor is precipitation, which might be the most important factor in chemical degradation because it acts as a calcium leaching of cementitious materials in a disposal system in a highly alkaline environment, increasing the porosity of the system. To predict the change in annual precipitation, the measurement of the precipitation observatory station in the nearest area of Gyeongju for the past 80 years was collected. The second factor is the diffusion coefficient, which plays an essential role in the durability of the concrete disposal system, promoting the decalcification of cementitious minerals, accelerating system degradation, and increasing the porosity of its system, thereby facilitating the migration of radionuclides. The diffusion coefficient values used in studies similar to this work were calculated and evaluated using the box-and-whisker method. The results of the sensitivity analyses for the reactive transport model in the concrete disposal system will be presented. The sensitivity cases show that the results obtained are much more sensitive to changes in transport parameters.
Domestic NPPs had produced the paraffin-solidifying concentrate waste (PSCW) for nearly 20 years. At that time radioactive waste management policy of KHNP was to reduce the volume and to store safely in site. The PSCW has been identified not to meet the leaching index after introducing the treatment system. PSCW has to be treated to meet current waste acceptance criteria (WAC) for permanent disposal. PSCW consists of dried concentrate 75% and paraffin 25% of volume. When PSCW is separated into a dried concentrate and a paraffin by solubility, total volume separated is increased twice. Final disposal volume of dried concentrate can reach to several times when solidifying by cement even considering exemption. Application of polymer solidification technology is difficult because dried concentrate is hard to make form to pellet. When PSCW is packaged in High Integrity Container (HIC), volume of PSCW is equal to the volume before package. The packaging process of HIC is simple and is no necessary of large equipment. It is important to recognize that HIC was developed to replace solidification of waste. HIC has as design goal a minimum lifetime of 300 years under disposal environment. The HIC is designed to maintain its structural integrity over this period, to consider the corrosive and chemical effects of both the waste contents and the disposal environment, to have sufficient mechanical strength to withstand loads on the container and to be capable of meeting the requirements for a Type A transport Package. The Final waste form is required for facilitating handling and providing protection of personnel in relation to solidification, explosive decomposition, toxic gases, hazardous material, etc. Structural stability of final waste form is required also. Structural stability of the waste can be provided by the waste itself, solidifying or placing in HIC. Final waste form ensure that the waste does not structurally degrade and affect overall stability of the disposal site. The HIC package contained PSCW was reviewed from several points of view such as physicochemical, radiological and structural safety according to domestic WAC. The result of reviewing shows that it has not found any violation of WCP established for silo type disposal facility in Gyeongju city.
The Ag0-containing sorbents synthesized by Na, Al, and Si alkoxides have higher maximum iodine capture capacity and textural properties than zeolite-based Ag0-containing sorbents. However, these sorbents were prepared in the form of granules via a step for cutting cylindrical alcogels. Since asmade sorbents decreased packing density, they must be additionally crushed and then classified into an appropriate size for increasing packing density. The bead formation in the step of sol-gelation could bring about the simplification of sorbent preparation process and an improvement of packing density. In the Na, Al, and Si alkoxides as starting materials, sol solution was hydrophilic and lower density than vegetable oil, which transformed sol droplets to sol-gel beads. Thus, in these precursors, sol droplets, which must be sprayed by single nozzle placed at bottom side of oil column, can rise up through oil column. Acetic acid (HOAc) was used as the catalyst for the hydrolysis of Na alkoxide (TEOS) and gelation of the Na+AlSi-OH alcosol. For obtaining sol-gel beads, experiments were performed by the flowrate change of sol solution and HOAc at different nozzle sizes using soybean oil column of 1 m in length. At a sol/HOAc flowrate ratio of 3.85, some Na+AlSi-OH alcogel beads were obtained. After the Ag/Na ion-exchange, Ag content in Ag+AlSi-OH hydrogel was low due to reaction between Na+ and HOAc during sol-gelation and aging step. The Ag+AlSi-OH hydrogel with high Ag content could be prepared by Na addition. After the solvent exchange and drying at ambient pressure, the bead sorbents had higher Ag0 content and larger pore size than granular sorbents. However, further experiments are needed to increase yield rate in bead sorbent.
Nuclear fusion energy is considered as a future energy source due to its higher power density and no emission of greenhouse gas. Therefore, various researches on nuclear fusion is being conducted. One of the key materials for the nuclear fusion research is tritium because the D-T reaction is the main reaction in the nuclear fusion system. However, that tritium can also be used for non-peaceful purposes such as hydrogen bombs. Therefore, it is necessary to establish the safeguards system for tritium. In that regards, this study analyzed the possibility of applying safeguards to tritium. To achieve this objective, the tritium production capacity through the light water reactor was analyzed. Tritium Production Burnable Absorber Rod (TPBAR) was modeled through the MCNP code, and tritium production was analyzed. The TPBAR is composed of a cylindrical tube with a double coating of aluminum and zirconium, filled with a sintered lithium aluminate (LiAlO2) pellet to prevent the release of tritium. Tritium is produced by the reaction of Li-6 in the TPBAR with neutrons, and it is extracted and stored at the Tritium Extraction Facility (TEF). As a result, the tritium production increased as the burnup and Li-6 mass increased. In addition, when the tritium produced in this way was transferred to TEF and extracted through the process, the application of safeguards measures was analyzed. To this end, various safeguards measures were devised, such as setting an Material Balance Area (MBA) for TEF and analyzing Material Balance Period (MBP). As there is no designated Significant Quantity (SQ) for tritium, cases were classified based on the type and form of nuclear weapons to estimate the Sigma MUF (Material Unaccounted For) of the TEF. Finally, the comprehensive application of safeguards to tritium was discussed. This research is expected to contribute to the establishment of IAEA safeguards standards related to tritium by applying the findings to actual facilities.
Milling facilities, which belong to the front end of the nuclear fuel cycle, are essential steps for utilizing uranium in nuclear power generation. These milling facilities currently provide the International Atomic Energy Agency (IAEA) with the location and annual production capacity of the facility through the Additional Protocol (AP, INFCIRC/540) and grant IAEA inspectors on-site sampling authority to apply safeguards to the facility. However, since milling facilities process a large amount of nuclear material and the product uranium ore concentrate (UOC) is bulk material, the absence of accounting for the facility could pose a potential risk of nuclear proliferation. Therefore, this study proposes technical approach that can be utilized for safeguards in milling facilities. Since the half-life of uranium isotopes is much longer than that of its daughter, they reach the secular equilibrium condition. However, after milling process, the fresh tailing showed the break of that secular equilibrium. As time goes on, they newly reach another secular equilibrium condition. Based on this observation, this study discussed the feasibility of the ratio method in safeguards purpose. The scenario applied in this study was 1% of uranium mill tailing. It was observed that the U-238/Th-234 and U- 238/Pa-234m ratios in fresh milling tails varied as a function of time after discharging, particularly during the first one year. This change can be worked as a significant signature in terms of safeguards. In conclusion, the ratio method in mill tails could be applicable for safeguards of nuclear milling facility.