검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9,512

        3104.
        2018.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The craniocervical flexion (CCF) exercise is one of the effective exercise in correcting forward head posture (FHP). However, some people with FHP achieve CCF with compensatory movements, for example, low cervical flexion using superficial neck flexors such as the sternocleidomastoid (SCM) muscle. No study has yet investigated whether a dualpressure biofeedback unit (D-PBU) method to prevent low cervical flexion would be helpful in performing pure CCF movement. Objects: The purpose of this study was to compare the effects of the CCF using D-PBU method and the traditional CCF method on the cross-sectional area (CSA) of the longus colli muscle (LCM) and the activity of SCM muscle in subjects with FHP. Methods: Twentyfour FHP subjects (male: 16, female: 8) were recruited for this study. All subjects performed CCF using two different methods: The traditional CCF method and the CCF using D-PBU method. The CSA of the LCM was measured via ultrasound, and surface electromyography was used to measure SCM muscle activity. Results: The change in CSA of the LCM was significantly larger during the CCF using D-PBU method (1.28±.09) compared with the traditional CCF method (1.19±.08) (p<.05). The SCM muscle activity using the CCF using D-PBU method (2.01±1.97 %MVIC) was significantly lower than when using the traditional CCF method (2.79±2.32 %MVIC) (p<.05). Conclusion: The CCF using D-PBU method can be recommended for increasing LCM activation and decreasing SCM muscle activity during CCF movement in subjects with FHP.
        4,000원
        3105.
        2018.05 구독 인증기관·개인회원 무료
        The purpose of this study is to compare securing of walking roads’ cross section zones in the walking paths by street by street and city by city. The cities involved with this study are Seoul Metropolitan Area and Tokyo Metropolitan Area. The securing of widths are compared based on zone types such as frontage, pedestrian, and furniture zones. The widths are measured directly through on-site surveys. The widths measured are compared the standards given by the present paper. Among 22 sites, the satisfied sites are counted. In terms of frontage zones in Seoul Metropolitan Area, 17 out of 22 sites are counted as satisfied while in Tokyo Metropolitan Area, 18 out of 22 sites are counted as satisfied. In terms of pedestrian zone, in Seoul Metropolitan Area, 13 out of 22 sites are counted as satisfied while in Tokyo Metropolitan Area, 14 out of 22 sites are counted as satisfied. In terms of furniture zone, in Seoul Metropolitan Area, 14 out of 22 sites are counted as satisfied while in Tokyo Metropolitan Area, 11 out of 22 sites are counted as satisfied. In conclusion, although walking roads’ cross section zones such as frontage, pedestrian, and furniture zones are relatively a new standards in Korea and Japan, many sites are founded being satisfied with the standards. However, the rates of satisfaction differs city by city. Especially the rates of satisfaction in furniture zones in Seoul Metropolitan are somewhat higher while the rates of satisfaction in frontage and pedestrian zones are similar between two cities.
        3106.
        2018.05 구독 인증기관·개인회원 무료
        Recently, there is an increasing the pavement distresses such as rutting with an increase in heavy vehicles on the road in Mongolia. Rutting is the longitudinal depression in the wheel path in asphalt pavements and it causes a hydroplaning and severe safety concern for users. This study aims to develop paving material that can prevent rutting on the road pavement by improving the durability of the asphalt mixture in Mongolia. Therefore, this study was carried out using the technique of reinforcing the material by adding fibers to conventional asphalt mixture. Fibers have been used to reinforce various materials for many decades in various parts of the world. It is generally understood that asphalt is strong in compression and weak in tension. Adding fibers with high tensile strength can help increase the strength of a mixture[1]. A mixture of glass fibers was used in this study to evaluate the performance characteristics. In coordination with the City of Ulaanbaatar, The test section selected in this study was Peace Avenue in Ulaanbaatar. The test section was a bus lane with severe rutting by heavy vehicles. The designated road test section performed cutting and overlay using five asphalt mixtures: Glass Fiber-reinforced Asphalt, Hot Mix Asphalt(10mm, 19mm), Polymer Modify Asphalt(2 types). The performance survey was conducted after the summer. As a result, No noticeable cracks were observed in glass-reinforced mixture section and the rut-depth of the glass-reinforced mixture is lower than other mixtures[2].
        3107.
        2018.05 구독 인증기관·개인회원 무료
        To be better fit for highways, pavement systems are required to provide comfortable and safe driving and be structurally durable. Composite pavements can be an effective option as they are more durable by placing a high functional asphalt overlay on a rigid concrete base layer. In order to apply a composite pavement system to the field, it is necessary not only to develop technologies that prevent reflecting crack and deterioration of the base layer, but also to improve bonding performance of materials and ensure structural performance as a pavement system against traffic loading. In advanced countries like Japan, USA and Europe, high-functional composite pavement systems are being put into practice across new highway networks. In this study, we evaluated structural performance (rutting, reflecting crack, and deflection) by applying traffic loads of actual highways through an accelerated pavement tester (APT) of a composite pavement section made up of a quiet porous surface laid over a water-proofing layer, a continuously reinforced concrete base, and a lean concrete sub-base layer, which was developed with new pavement methods used for each layer prior to field application. The APT specimen was constructed with paving materials and equipment actually used on site in the same dimensions (W3.5m*L14m*H2m) as actual highway sections in Korea, and 3-axle double-wheel heavy load (45ton) cart type KALES(Korean Accelerated Loading and Environmental Simulator) traveling on the specimen in both directions was used to simulate traffic loading. After applying around 8,574,000 ESALs of traffic loads, no reflecting crack occurred on the asphalt surface of the composite pavement, without surface distress except for rutting. In order to examine what causes rutting of pavements, we surveyed thickness of pavements by layer and measured asphalt density.
        3108.
        2018.05 구독 인증기관·개인회원 무료
        Asphalt pavement overlay method is one of widely chosen construction methods for remodelling existing aged concrete pavement layer. However, in this case reflective cracking is a challenging issue due to movement of transverse joints: built in existing concrete pavement layer with constant interval length. In this paper, collecting field data: collection of displacement and temperature data on existing concrete pavement layer for further complicated pavement performance analysis, was performed. To fulfil this objective, various types of thermometer were embedded into concrete layer with different depth level. Then, movement of existing concrete layer was measured numerically. Each Displacement Measuring Gauge (DMG) along with thermometer was embedded with depth of 3cm and 15cm, respectively. Additional thermometers were embedded at the middle depth of overlaid asphalt pavement layer for further extensive analysis and data collection. Total four testing sites were considered based on different asphalt mixture type and construction method. The 1st site was constructed with conventional construction approach, the 2nd site was constructed with a new pavement equipment contains simultaneous tack-coating function, the 3rd site was similar to 1st site but Guss-asphalt was constructed as a binder course, and in 4th site Noise-Reduction Porous Asphalt (NRPA) was constructed as a surface course and regular Dense Grade Asphalt (DGA) was constructed as a binder course. A field asphalt pavement layer sample coring works: along with basic material property tests, were also performed to acquire not only overlaid asphalt but also existing concrete pavement materials. This gauge measuring work in this study is an initial step therefore, long-term movement data of each pavement layer was not able to be collected, unfortunately. However through collecting and analysing initial data on each test site, two crucial findings were acquired. First, in all four tested site highest temperature variations were observed at the upper asphalt pavement layer and the variation trends decreased with increase of pavement depth (in case of concrete pavement layer, temperature and movement variations also decreased with increase of pavement depth). Secondly, when Guss-asphalt was applied as a binder course temperature variations of existing concrete pavement layer was crucially smaller than those of other comparison cases. These current findings and collected data set can provide successful input information for further pavement structure analysis such as 2D (and/or 3D) Finite Element Method (FEM) analysis as a future study.
        3109.
        2018.05 구독 인증기관·개인회원 무료
        Generally, remarkable amount of Reclaimed Asphalt Pavement (RAP) is produced annually by pavement surface cutting: due to early distress on asphalt pavement layer and remodelling construction work on existing aged-asphalt pavement layer. In South Korea, various types of research on proper and optimized RAP material development and field application (including evaluation process) are performed because of increase of existing road maintenance budget and technology. The major material of RAP is recycled aggregate coated with aged asphalt binder. The advantages of application of RAP on asphalt pavement are recyclable material proportion can be increased due to re-using of existing aggregate and eco-friendly characteristics. However, more amount of specific additives (and/or agent) needs to be implemented during production with increase amount (and/or proportion) of RAP on virgin asphalt material inevitably. This action is highly needed because of recovery of penetration grade and absolute viscosity of final production. The required amount of additives tends to be vary based on different aging level of RAP, amount of RAP and types of virgin asphalt binder. But it is well known that required amount of additives tends to be increased with increase of RAP proportion compared to virgin asphalt mixture. Moreover, it also should be known that mere increase of additives on RAP asphalt can provide negative effect on its quality and mechanical performance. In this study, high penetration grade asphalt binder: contains between 200 and 300 level of penetration grade, was used for producing RAP asphalt mixture with small amount of required additive application. After the sample preparation, various characteristics of RAP asphalt were analysed with extensive experimental work.
        3110.
        2018.05 구독 인증기관·개인회원 무료
        Recently, Cambodia has been investing a lot of money in the construction and maintenance of roads, which are social infrastructures. However, damage to the existing pavement is accelerating due to the old age of the road pavement, poor drainage facilities and increase in heavy traffic. To solve this problem, a fundamental solution such as a high-performance asphalt mixture is required to extend the life of road pavement. In this study, a high performance glass fiber reinforced asphalt mixture developed in Korea was applied to Cambodia. Prior to field application, Marshall stability tests were performed on glass fiber reinforced asphalt mixtures, SBS modified asphalt mixtures and asphalt mixtures commonly used in Cambodia. The Marshall stability test showed that the glass fiber reinforced asphalt mixture and the SBS modified asphalt mixture had the same strength (about 1.3 times higher strength than the usual asphalt mixture). In addition, the test construction was carried out on the National Highway 2 of Cambodia for the evaluation of the performance of the three mixtures. In the future, the long-term performance evaluation of each mixture will be conducted through follow-up survey of the test construction area.
        3111.
        2018.05 구독 인증기관·개인회원 무료
        In order to improve the durability of the asphalt pavement, the glass fiber reinforced asphalt which reinforces the aggregate and the binder in three - dimensional form by adding glass fiber to the asphalt mixture has been studied and the durability improvement effect of the asphalt pavement has been confirmed. Porous pavement has been increasingly applied due to reduced traffic accidents and noise reduction, but durability problems such as aggregate stripping and pot-hole are emerging. This study evaluated the durability enhancement effect by adding glass fiber to the porous mixture. The cantabro loss ratio and the indirect tensile strength test were performed to evaluate the performance of the glass fiber reinforced porous mixture. The glass fibers were added to the mixture using PG76-22 and PG64-22 binder and not to the mixture using PG82-22 binder. The mixture using the PG76-22 binder was added 1.4% (PEGS 0.6%, Micro PPGF 0.2%, Macro PPGF 0.6%) glass fiber based on the weight of the mixture. The mixture using the PG64-22 binder was added 1.4% (PEGS 0.6%, Micro PPGF 0.2%, Macro PPGF 0.6%) and 2.1% %(PEGS 0.9%, Micro PPGF 0.3%, Macro PPGF 0.9%)glass fibers by weight of the mixture. The glass fibers were used at the same ratio as that applied to the conventional asphalt mixture test. As a result of the cantabro loss rate test, the mixture using the PG82-22 binder showed a loss rate of 10.7% at 20 ℃ and 22.4% at -20 ℃. The mixture using PG76-22 binder and 1.4% glass fiber showed a loss ratio of 13.2% at 20 ℃ and 26.7% at -20 ℃. The mixture using PG64-22 binder and 1.4% glass fiber showed a loss rate of 12.5% at 20 ℃ and 35.9% at -20 ℃. The mixture using PG64-22 binder and 2.1% glass fiber showed a loss rate of 11.9% at 20 ℃ and 26.6% at -20 ℃. The three mixtures (using of PG82-22 binder, PG76-22 binder + 1.4% glass fiber and PG64-22 binder + 2.1% glass fiber) satisfied quality standard of Ministry of Land, Infrastructure and Transport. As a result of the indirect tensile strength test, the mixture using the PG82-22 binder showed 0.73 N/㎟. The mixture using PG76-22 binder and 1.4% glass fiber showed 0.88 N/㎟. The mixture using PG64-22 binder and 1.4% glass fiber showed 0.62 N/㎟. The mixture using PG64-22 binder and 2.1% glass fiber showed 0.74 N/㎟. In this study, the durability enhancement effect was confirmed by adding glass fiber to the drainage mixture. We will do further research to confirm the optimal combination of glass fibers.
        3112.
        2018.05 구독 인증기관·개인회원 무료
        In this study, we conducted laboratory tests to evaluate the moisture resistance of the asphalt mixture containing air-cooled slag. Generally, in Korea, hydrated lime is used up to 1.5% of the aggregate weight to improve the moisture resistance of the asphalt mixture. The slag used in this study is a byproduct produced in the steel industry and can be produced through a specific process. And its chemical composition is similar to that of the hydrated lime stone and satisfies the filler quality standards of the Ministry of Land, Transport and Transport. In order to evaluate the moisture resistance of the asphalt mixture containing air-cooled slag, we conducted the dynamic immersion test, which is a non-compaction mixture test. Also we conducted the indirect tensile strength ratio test and the Hamburg wheel tracking test for compaction asphalt mixture test. As a result of the dynamic immersion test, the effect of stripping prevention was similar to that of hydrated lime because it did not show much difference from the hydrated lime mixture. In the case of indirect tensile strength test, the specimens prepared in the laboratory and on the site satisfied the quality standards of the Ministry of Land, Transport and Logistics and the TSR value increased with increasing the content of air-cooled slag. However, when the content of air-cooled slag is more than 2%, the indirect tensile strength value is getting lower. So it is judged that the appropriate content should be determined to be 2% or less. In the case of the Hamburg wheel tracking test, when the steel wheel load passed 20,000 times on the asphalt mixture containing 2% of air-cooled slag, it showed 5.27mm deformation. And the stripping point was not observed. In this study, it was found that when the air-cooled slag is used as a substitute for hydrated lime, the moisture resistance of the asphalt mixture can be improved. It is considered that the aircooled slag can be used for the asphalt pavement material through the characteristics analysis of mechanical and field application in the future
        3113.
        2018.05 구독 인증기관·개인회원 무료
        In recent years, pavement distresses have been caused by diverse factors such as spalling, deterioration of repaired sections, blow-up, and alkali aggregate reaction due to changing climate environment of a concrete pavement and its construction and maintenance conditions (supply of materials, increase in use of de-icers, etc,). As a leading repair method for deteriorated concrete pavements, partial-depth repair is implemented in accordance with guidelines of material properties for joints of a concrete pavement and field application evaluation systems, but still some of the repaired sections become deteriorated again at an early stage due to poor construction quality and failure of response to environmental impacts. Distresses that can be corrected with partial-depth repairs are largely divided into those of repair materials and of the existing pavement bonded to repair materials, and combined distress of repair materials and the existing pavement. Although re-repair methods should be different by distress type and scale than conventional pavement repair methods, appropriate repair methods and guidance for re-repairs have not been in place so far, and therefore currently, re-repair practices follow the existing manual of partial depth repairs. Therefore, this study evaluated concrete bond characteristics by removing method and repair scope for an experimental section of frequently distressed pavements to determine a re-repair scope and method for deteriorated partial depth repair sections of concrete pavement, the number of which has increased over time.
        3114.
        2018.05 구독 인증기관·개인회원 무료
        In this paper, first the aging level of Stone Mastic Asphalt (SMA): one of the widely applied asphalt mixture types for highway construction in South Korea, was analysed then those aging effects on various performance characteristics were studied. Then, a suitable methodology for improving performance on real asphalt pavement construction site was recommended. To fulfil the objective, Gel-Permeation Chromatography (GPC) experimental work was performed on various aged SMA mixtures by measuring Large Molecular Size (LMS) then the Absolute Viscosity (AV) value was predicted based on the findings in the previous step. As results, it was found that types of performance change on aged asphalt binders could be estimated by computed Estimated Absolute Viscosity (EAV) values. It also should be mentioned that the performances of tested SMA mixture presented negative trend after aging effect increases; even though the performance deterioration level of SMA is lower than that of regular Dense Grade Asphalt (DGA) mixture, which means proper reactions are recommended to keep its quality. Moreover, better resistance against aging effect was found by applying Hydrated-Lime (HL) or Low Density Poly-Ethylene (LDPE) compared to any other additives on asphalt mixtures. A unique Aging Quantity (AQ) model for SMA mixtures was developed by using two factors: collected aging time data set from field (and/or laboratory) and AV values based on different temperature conditions. The Predicted Absolute Viscosity (PAV) on SMA mixtures was computed by using the introduced AQ model then the aging level of asphalt binder was estimated as a final step. Additionally, five performance characteristics of asphalt binder: Dynamic Shear Rheometer(DSR) high temperature limit, Bending Beam Rheometer (BBR) low temperature limit, G*/sinδ, Creep stiffness, and m-value, were analysed. The value of AV showed the best performance for predicting and representing aging level. Finally, the aging level of given asphalt mixtures in the field can be easily predicted by choosing one of three approaches presented in this research. It can be concluded that the performance of asphalt pavement can be increased by selecting proper materials and performance prediction methodologies introduced in this study. However, only limited number of specimens were considered in this study due to limit of raw materials and laboratory equipment condition. Therefore, extensive experimental works with various types of asphalt materials are recommended for strengthen findings in this thesis as a future research.
        3115.
        2018.05 구독 인증기관·개인회원 무료
        The Semi-Rigid Pavement (SRP) mixture is composed of Gap Graded Asphalt (GGA) mixture (air void = 20~28%) and cement paste. By inserting cement paste into voids in GGA mixture, SRP can provide not only flexibility but also rigidity characteristics on pavement performance. SRP can mitigate pavement surface temperature increase during summer session, provide better smoothness and mitigate rutting distress due to heavy weight vehicles, successfully. In Japan, SRP is widely applied in cross section area, heavy vehicle parking lot and highway ticketing booth in highway network system. In South Korea, SRP was introduced and applied since 2005. However, still more researches and studies are needed to understand material characteristics and improve performance of SRP. Moreover, the current SRP system in South Korea merely follows and adapts the aggregate gradation information from Japan which needs to be amended and customized into original material (i.e. aggregate, binder and cement) situation of South Korea. In this paper, SRP system based on Stone Mastic Asphalt (SMA) mixture design originated from Korea Expressway Corporation (KEC) and enhanced cement paste with addition of fly-ash and slags was developed. In addition, an optimized proportion between asphalt mixture air voids and cement paste amount with consideration of economic benefit was introduced. Based on field evaluation process it can be said that the newly developed SRP system can successfully adapted not only in static site on highway: parking lots or ticketing booth, but also in dynamic site on highway: driving and wheel path.
        3116.
        2018.05 구독 인증기관·개인회원 무료
        In general, the road roughness is managed by the roughness factor(or level, index) which is numerically or quantitatively generated(or converted) from the surface profile. However, it should be mentioned that the various roughness indexes including IRI(i.e. International Roughness Index) consider only vertical displacement and one longitudinal profile. In this research, the new roughness index, which evaluates reasonably the ride quality, was developed through the extensive correlation analysis between various vehicle behavior and ride quality. The bounce and pitch of moving vehicle are caused by the change of longitudinal profile. On the other hand, the roll is caused by the difference of the left and right profiles. Since the pitch is caused by the bounce difference between the front and rear axles of a vehicle, the two values occur in a similar pattern. In this study, the bounce and roll of a vehicle were predicted with a half car model, which is connected with two quarter car models. A half-car model was used to calculate the roll rotation angle of the vehicle body according to the change of the road profile. The roll rotation angle was used to calculate the coordinates of the head position of the passenger in the passenger seat. Finally, the coordinates were used to calculate the horizontal and vertical displacement of the head position. The new roughness index is the cumulative RMS value of the horizontal and vertical displacement occurring at the head position while moving at a speed of 80 km/h per km. The first and second experiment results presented that the coefficient of determination(i.e. R2) for the new roughness index was the highest with 0.80. Moreover, the R2 values of MRI, HRI, and RN were also relatively high such as 0.73 ~ 0.79. The feasibility test was conducted on sections that show the greater IRI variation between left and right wheel-pass among the pilot sites. Because a prediction result came from MRI and IRI, the difference between KERI and MRI was relatively lager with the increment of IRI difference between right and left wheel-pass. In this case, the roll was high, and the satisfaction of the ride quality was relatively low. Based on the other field survey results obtained in Seoul, the portion of IRI difference between left and right wheel-pass was above 0.4m/km that presented approximately seven times higher value than the measured IRI values on the expressway. In addition, the sectors showed IRI difference level higher than 2.0m/km were approximately 70 times higher than those in expressway. Thus, it is possible that the KERI could successfully and reasonably evaluate the ride quality on various road types.
        3117.
        2018.05 구독 인증기관·개인회원 무료
        Composite pavements are constructed by placing a high functional asphalt surface layer on a high performance concrete rigid base layer and provide a more durable, high functional surface to road users. Service life of composite pavements is dependent on the bonding performance of the lower rigid base and the flexible surface layer. Accordingly, it is necessary to place an impermeability layer between the functional surface layer and the rigid base to enhance bonding performance and to prevent moisture penetration into the rigid base and deterioration of pavement. In order to use optimal composite pavement sections, two types were applied to impermeability layer: highly impermeable water-tight SMA and mastic asphalt currently in use. APT (Accelerated Pavement Testing) and experimental construction were carried out to evaluate bond strengths between the rigid base and the impermeability layer depending on the type of impermeability layers. Composite pavement sections for the APT had a 22 cm concrete rigid base layer and a 5cm functional surface, as well as either 5cm of SMA impermeability layer and 5cm of mastic layer. After applying around 8,574,000 ESALs, pull-off test was conducted, which showed that the mastic section outperformed the SMA section. In the experimental construction, three types of rigid base layers, JCP (Jointed Concrete Pavement), CRCP (Continuously Reinforced Concrete Pavement), and RCCP (Roller Compacted Concrete Pavement), were used for composite pavement sections, and as in the APT, two types of impermeability layers, SMA and mastic, were used per rigid base layer of new and deteriorated concrete pavement. Therefore, seven composite pavement sections in total were constructed. We measured the bond strength over one year or so following the construction of these composite pavement sections and found that regardless of the type of rigid base layer and whether it was new or not, those sections with a mastic impermeability layer had high bond strengths.
        3118.
        2018.05 구독 인증기관·개인회원 무료
        In Sri Lanka, the shoulder in asphalt pavements has been constructed using the materials transported from borrow pit in the iRoad Project due to the low quality of in-situ soils. After excavating 150~200mm thick and 500mm wide shoulder area, the borrow pit materials are placed and compacted according to specifications. The excavated in-situ soils are dumped in designated location. It is estimated that this process of shoulder construction is not economical due to high material transportation cost and can also induce the environmental issues by disposal of in-situ soils. It can also cause distresses such as surface rutting and edge drop-off in soft shoulder section due to bearing capacity failure and off-tracking of vehicle. The heavy rainfall in Sri Lanka can induce severe erosion problem when using the soft shoulder. To improve the strength and durability of pavement shoulders in the iRoad Project, the soil stabilization will be a good alternative to solve the above mentioned problems. The use of in-situ soils with addition of soil stabilizer enables to reduce the construction cost of shoulder section and mitigate the environment issues. The objective of this task is to review the application of soil stabilization method for soft shoulder construction in the iRoad Project. Firstly, the quantitative analysis of soil strength improvement due to soil stabilization was done for soil samples collected from iRoad construction sites. Two types of soils were selected from iRoad Project sites and prepared for soil stabilization testing by the Road Development Authority. Secondly, the appropriate stabilizer was selected at given soil type based on test results. Three different stabilizers, ST-1, ST-2, and ST-3, produced in Korea were used for estimating soil strength improvements. Finally, the optimum stabilizer content was determined for improving shoulder performance. The uniaxial compressive strength (UCS) test was conducted to evaluate the strength of stabilized soil samples in accordance with ASTM D 1633. The use of bottom ash as a stabilizer produced from power plant in Sri Lanka was also reviewed in this task.
        3119.
        2018.05 구독 인증기관·개인회원 무료
        The ride quality (i.e. smoothness) is a key factor for evaluating the construction quality of expressway asphalt pavement. Conventionally, three paving devices are widely used to control the surface layer thickness: leveling sensor (i.e. LS), short-range-surfacing-contact-ski (i.e. SSCS) and long-range-surfacing-contact-ski (i.e. LSCS). However, each of these levelling tools presents one major drawback. In the case of LS, if the original sub-layer evenness is poor, the final asphalt pavement surface and its smoothness will be negatively affected. The SSCS cannot assure satisfactory smoothness when relatively long paving section (in the order of 10 km) are paved. While the LSCS would reduce the drawback of the SSCS, its weight on the one hand and its length on the other discourage its use in the paving site especially for curved sections. In this paper, a next generation pavement smoothness leveling equipment, known as non-contact-digital-ski (i.e. NCDS) was implemented, evaluated and compared to the conventional equipment leveling device. The international Roughness Index (IRI m/km) was measured on sections paved with and without NCDS and the results visually and statistically compared. In addition, for the same sections, the modulus of the pavement layers was computed and compared by means of Falling Weight Deflectometer (i.e. FWD). It was observed that when NCDS is used for asphalt pavement overlay of existing concrete pavement, significant improvement in IRI (i.e. IRI<1.0m/km) and consistently uniform elastic modulus could be achieved compared to the conventional levelling and paving method.
        3120.
        2018.05 구독 인증기관·개인회원 무료
        In Korea, concrete pavements were first applied to highways in 1981 and as a result of continued increase in length over the past years, 2,592 km of concrete pavement network is currently in service, of which 1,399 km(54%) of concrete pavements is 10 years or older, and 233km(9%) is 20 years or older. The length of concrete pavement sections nationwide has been steadily on the rise every year (EXTRI, 2017). Approximately 54% of current concrete pavement highway network will reach the service life limit in 2025 which means around 660 billion won is needed for future pavement repair project (EXTRI, 2017). Given that concrete pavements beyond design life still have a remaining service life, it is economically advantageous to repair them before reconstruction. Asphalt overlays are a major repair method for older concrete pavements. Depending on the concrete pavement condition, thickness and mixture of asphalt overlays are determined. Service life of asphalt overlays varies by the presence, time and size of cracks in existing concrete pavements and reflecting crack at joints. Temperature change of concrete pavement is among the major reaction parameters of reflecting crack. Reflecting crack develops when asphalt bottom-up cracking by longitudinal shrinkage and expansion due to temperature change of the concrete base layer, top-down cracking by temperature difference between top and bottom of concrete, and shear stress by traffic loading are combined (Baek, 2010). Crack and joint behaviors of concrete pavement vary between the base layer and the concrete surface of composite pavement system, and different conductivity by mixture and thickness of asphalt overlay leads to temperature change of concrete base course. This study measured temperatures of each layer of diverse composite pavements in place on site and analyzed differences in temperature change of concrete base layer depending on mixture and thickness of asphalt overlays. Overlay thickness parameters were 5cm and 10cm, two values most widely used, while mixture parameters were SMA and porous asphalt. Based on temperature change of concrete surface, this study also evaluated the difference of temperature change in concrete base layer with an asphalt overlay on top. Findings from this study are expected to be utilized for studies on mechanism and modeling of reflecting crack in old concrete pavements with asphalt overlays.