Nano sized SiC particles (270 nm) are easily agglomerated in nickel sulfamate electrolytic bath during a composite electrodeposition process. The agglomeration of nano particles in composite coatings can significantly reduce the mechanical properties of the composite coatings. In this study, Ni-SiC nano composite coatings were fabricated using a conventional electrodeposition process with the aid of ultrasound. Nano particles were found to be distributed homogeneously with reduced agglomeration in the ultrasonicated samples. Substantial improvements in mechanical properties were observed in the composite coatings prepared in presence of ultrasound over those without ultrasound. Ni-SiC composite coatings were prepared with variable ultrasonic frequencies ranging from 24 kHz to 78 kHz and ultrasonic powers up to 300 watts. The ultrasonic frequency of 38 kHz with ultrasonic power of 200 watt was revealed to be the best ultrasonic conditions for homogeneous dispersion of nano SiC particles with improved mechanical properties in the composite coatings. The microstructures, phase compositions, and mechanical properties of the composite coatings were observed and evaluated using SEM, XRD, Vickers microhardness, and wear test. The Vickers microhardness of composite coatings under ultrasonic condition was significantly improved as compared to the coatings without ultrasound. The friction coefficient of the composite coating prepared with an ultrasonic condition was also smaller than the pure nickel coatings. A synergistic combination of superior wear resistance and improved microhardness was found in the Ni-SiC composite coatings prepared with ultrasonic conditions.
In this study, activated carbon (AC) as a carbon source was modified with different concentrations of cobalt chloride (CoCl2) to prepare a Co-AC composite, and it was used for the preparation of Co-AC/TiO2 composites with titanium oxysulfate (TOS) as the titanium precursor. The physicochemical properties of the prepared Co-AC/TiO2 composites were characterized by N2 adsorption at 77 K, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. The photocatalytic treatments of organic dyes were examined under an irradiation of visible light with different irradiation times. N2 adsorption data showed that the composites had decreased surface area compared with the pristine AC, which was 389 m2/g. From the XRD results, the Co-AC/TiO2 composites contained a mixturephase structuresof anatase and rutile, but a cobalt oxide phase was not detected in the XRD pattern. The EDX results of the Co-AC/TiO2 composites confirmed the presence of various elements, namely, C, O, Ti, and Co. Subsequently, the decomposition of methylene orange (MO, C14H14N3NaO3S) and rhodamine B (Rh.B, C28H31ClN2O3) in an aqueous solution, respectively, showed the combined effects of an adsorption effect by AC and the photo degradation effect by TiO2. Especially, the Co particles in the Co-AC/TiO2 composites could enhance the photo degradation behaviors of TiO2 under visible light.
For the present paper, we prepared MgO/MWCNT/TiO2 photocatalyst by using multi-walled carbon nanotubes(MWCNTs) pre-oxidized by m-chlorperbenzoic acid (MCPBA) with magnesium acetate tetrahydrate (Mg(CH2COO)2·4H2O)and titanium n-butoxide (TiOC(CH3)34) as magnesium and titanium precursors. The prepared photocatalyst was analyzed byX-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. The decompositionof methylene blue (MB) solution was determined under irradiation of ultraviolet (UV) light. The XRD results show that theMgO/MWCNT/TiO2 photocatalyst have cubic MgO structure and anatase TiO2 structure. The porous structure and the TiO2agglomerate coated on the MgO/MWCNT composite can be observed in SEM images. The Mg, O, Ti and C elements can bealso observed in MgO/MWCNT/TiO2 photocatalyst from EDX results. The results of photodegradation of MB solution under UVlight show that the concentration of MB solution decreased with an increase of UV irradiation time for all of the samples. Also,the MgO/MWCNT/TiO2 photocatalyst has the best photocatalytic activity among these samples. It can be considered that theMgO/MWCNT/TiO2 photocatalyst had a combined effect, the effect of MWCNT, which could absorb UV light to create photo-induced electrons (e−), and the electron trapping effect of MgO, which resulted in an increase of the photocatalytic activity of TiO2.
Chronic inflammatory diseases such as Crohn′s disease and ulcerative colitis are associated with increased risk of colon adenocarcinoma. Apoptic induction of colon cancer cells by cytokines and death receptors is an important anti-cancer therapy. We observed that co-administration of TNFα and IFNγ in human colon cancer cell line, HCT116, resulted in cell death and expression of IL-32. Cleavage forms of caspase-3, caspase-9, and PARP were increased in TNFα / IFNγ-treated HCT116. mRNA expression of death receptors, including TNFR1 and Fas were not changed and NO generation was not induced by combination of TNFα and IFNγ. However, mRNA expression of IL-32α, β, and γ was increased in TNFα / IFNγ-treated HCT116. To determine the effect of IL-32 in HCT116 cell apoptosis by TNFα / IFNγ stimulation, IL-32 siRNA-transfected HCT116 cells were cultured with TNFα / IFNγ and cell proliferation was measured. IL-32 siRNA induced slight recovery of cell viability of TNFα / IFNγ-stimulated HCT116. These results suggest that IL-32 is not directly related to apoptosis of HCT116 by TNFα / IFNγ stimulation. However, IL-32 expression by TNFα or TNFα / IFNγ in a colon cancer cell line is very interesting because of the unknown effect of IL-32 in colon cancer. Our study will contribute to development of studies for IL-32 function in human colon cancer and anti-cancer therapies using cytokines.
Intracytoplasmic sperm injection (ICSI) is one of the artificial fertilization methods when only a few sperm are available for insemination, and an important tool for the preservation of genetic materials of endangered animal species, especially the male is infertile. Different from other species such as mice and pigs, the conventional ICSI method which uses spiked pipette for injection (Spike-ICSI) is exhibited low success rates in cattle because the bovinesperm head membrane is hard to break during injection procedure. We chose piezo-assisted ICSI (Piezo-ICSI) for the improvement of the injection procedure including sperm head membrane rupture and efficient puncture of the plasma membrane of the oocytes. In this experiment, we compared the efficacy of the bovine ICSI embryo production between the Piezo-ICSI and Spike-ICSI. The second polar body extrusion, pronuclear formation, cleavage and blastocyst formation were evaluated after implementation of two different ICSI techniques. The Piezo-ICSI tended to show comparably higher rates of the second polar body extrusion (41.7%), the pronuclei formation (42.9%) and the two-cell cleavage (41.4%) than Spike-ICSI does (33.3%, 28.6% and 23.5%, respectively) although there is no statistic significance between two groups. In addition, the blastocysts were only obtained from the Piezo-ICSI group (10.3%). Our finding shows that the Piezo-ICSI may be used as an artificial fertilization method in cattle when in vitro fertilization is not applicable.
Decorin (DCN) is a member of small leucine‐grich proteoglycans which are ubiquitous components of the extracellular matrix. It regulates many physiological processes, such as matrix formation, collagen fibrillogenesis, angiogenesis, cancer growth, and cardiovascular diseases. It has been shown that DCN is expressed in the uterus during pregnancy and modulates implantation and decidualization for the establishment and maintenance of pregnancy in mice and humans. Expression of DCN in the uterine endometrium during pregnancy has not been investigated in pigs. Thus, this study investigated expression of DCN in the uterine endometrium during the estrous cycle and pregnancy in pigs. Uterine endometrial tissues were from day (D) 12 and 15 of the estrous cycle and D12, D15, D30, D60, D90, and D114 of pregnancy. Northern blot and real‐gtime RT‐gPCR analyses showed that expression of DCN mRNA was detected throughout the estrous cycle and pregnancy with the highest levels during mid pregnancy. In situ hybridization analysis showed that DCN mRNA was localized to both luminal and glandular epithelia during the estrous cycle and pregnancy and also to chorionic membrane during mid pregnancy in pigs. To determine whether endometrial expression of DCN was affected by the somatic cell nuclear transfer (SCNT) procedure, DCN mRNA levels in the uterine endometrium from gilts with SCNT embryos on D30 of pregnancy were compared with those from gilts with normal embryos using real‐gtime RT‐gPCR analysis. The result showed that DCN mRNA levels in the uterine endometrium were not significantly different between gilts with normal embryos and SCNT embryos. These results suggest that DCN may play an important role for endometrial tissue remodeling during mid pregnancy, and DCN expression is not affected by the SCNT procedure at the early stage of pregnancy in pigs.
Carbon materials such as graphite and graphene exhibit high electrical conductivity. We examined the electrical conductivity of synthetic and natural graphene powders after the chemical reduction of synthetic and natural graphite oxide from synthetic and natural graphite. The trend of electrical conductivity of both graphene (synthetic and natural) was compared with different graphite materials (synthetic, natural, and expanded) and carbon nanotubes (CNTs) under compression from 0.3 to 60 MPa. We found that synthetic graphene showed a marked increment in electrical conductivity compared to natural graphene. Interestingly, the total increment in electrical conductivity was greater for denser graphite; however, an opposite behavior was observed in nanocarbon materials such as graphene and CNTs, probably due to the differing layer arrangement of nanocarbon materials.
We report herein the successful results of estrus induction, sperm cryopreservation and kids born by transcervical insemination of frozen-thawed semen in a Saanen goat. Flugestone acetate (FGA: 60 mg) was inserted into vagina for 15 days. The goat was intramuscularly injected with 400 IU PMSG and 200 IU hCG (: Intervet, Korea) a day before withdrawal of the FGA sponge. Follicles and corpora lutea were identified on both ovaries by laparoscopy. Artificial insemination was performed 46 hours after removal of FGA sponge. The concentration of frozen-thawed semen was and 0.5 ml of frozen-thawed semen was transcervically inseminated into uterine body under anesthesia. Three kids, all females, were born 144 days after artificial insemination. This is the first report producing kids by transcervical insemination of frozen-thawed semen in a Saanen goat of which the estrus was induced by FGA sponges, PMSG and hCG during non-breeding season in Korea.
The family Ciidae is presented for the first time from Korea. Two unrecorded species, Octotemnus laminifrons (Motschulsky) and Octotemnus japonicus Miyatake are reported. Morphological photographs of adults, description, illustrations of diagnostic characteristics, and host fungi are provided.
This study was carried out to obtain new anti-gout agent from mushrooms. Various extracts from twelve kinds of mushrooms were prepared by water and ethanol extractions and its anti-gout xanthine oxidase inhibitory activity were investigated. Water extract of Flammulina velutipes and Agaricus bisporus fruiting bodies showed high xanthine oxidase inhibitory activity of 70.8% and 60.0%, respectively. However, its inhibitory activity of these ethanol extracts were very low excepet 60.3% of Innotus obliquus. Finally, we selected Flammulina velutipes, showing the highest xanthine oxidase inhibitory activity as a producer of new anti-gout agent.
This study was carried out to investigate characteristic pattern of fruiting body of Ganoderma lucidum and their antioxidant activity. Mycelia of all strains were firstly inoculated into potato dextrose agar(PDA) and then transfered to a media of saw dust which contained 20% rice bran. These mycelia of saw dust were then inoculated into oak tree in polyethylene bags which has been sterilized for 8h at 120℃. The polyethylene bags were sent to a growth room for growth of fruit bodies. Antioxidant activities of each fruiting body were examined by using DPPH(α,α-diphenyl-β-picrylhydrazyl).
The mu opioid receptor (MOR) has been regarded as the main site of interaction with analgesics in major clinical use, particularly morphine. The repressor element-1 silencing transcription factor (REST) functions as a transcriptional repressor of neuronal genes in non-neuronal cells. However, it is expressed in certain mature neurons, suggesting that it may have complex and novel roles. In addition, the interactions between MOR and REST and their functions remain unclear. In this study, we examined the effects of morphine on the expression of REST mRNA and protein in human neuroblastoma NMB cells to investigate the roles of REST induced by MOR activation in neuronal cells. To determine the effects of morphine on REST expression, we performed RT-PCR, real-time quantitative RT-PCR, western blot analysis and radioligand binding assays in NMB cells. By RTPCR and real-time quantitative RT-PCR, the expression of REST was found to be unchanged by either the MOR agonist morphine or the MOR specific antagonist CTOP. By western blot, morphine was shown to significantly inhibit the expression of REST, but this suppression was completely blocked by treatment with CTOP. In the radioligand binding assay, the overexpression of REST led to an increased opioid ligand binding activity of endogenous MOR in the NMB cells. These results together suggest that morphine inhibits the expression of REST in human neuroblastoma cells through a post-transcriptional regulatory mechanism mediated through MOR.
Selenoprotein S (SelS) is widely expressed in diverse tissues where it localizes in the plasma membrane and endoplasmic reticulum. We studied the potential function of SelS in erythrocyte differentiation using K562 cells stably over-expressing SelS wild-type (WT) or one of two SelS point mutants, U188S or U188C. We found that in the K562 cells treated with 1μM Ara-C, SelS gradually declined over five days of treatment. On day 4, intracellular ROS levels were higher in cells expressing SelS-WT than in those expressing a SelS mutant. Moreover, the cell cycle patterns in cells expressing SelS-WT or U188C were similar to the controls. The expression and activation of SIRT1 were also reduced during K562 differentiation. Cells expressing SelS-WT showed elevated SIRT1 expression and activation (phosphorylation), as well as higher levels of FoxO3a expression. SIRT1 activation was diminished slightly in cells expressing SelS-WT after treatment with the ROS scavenger NAC (12 mM), but not in those expressing a SelS mutant. After four days of Ara-C treatment, SelS-WT-expressing cells showed elevated transcription of β-globin, y-globin, ε-globin, GATA-1 and zfpm-1, whereas cells expressing a SelS mutant did not. These results suggest that the suppression of SelS acts as a trigger for proerythrocyte differentiation via the ROS-mediated downregulation of SIRT1.
Few studies have evaluated the apoptosis-inducing efficacy of NaF on cancer cells in vitro but there has been no previous investigation of the apoptotic effects of NaF on human oral squamous cell carcinoma cells. In this study, we have investigated the mechanisms underlying the apoptotic response to NaF treatment in the YD9 human squamous cell carcinoma cell line. The viability of YD9 cells and their growth inhibition were assessed by MTT and clonogenic assays, respectively. Hoechst staining, DNA electrophoresis and TUNEL staining were conducted to detect apoptosis. YD9 cells were treated with NaF, and western blotting, immunocytochemistry, confocal microscopy, FACScan flow cytometry, and MMP and proteasome activity assays were performed sequentially. The NaF treatment resulted in a time- and dose-dependent decrease in YD9 cell viability, a dose-dependent inhibition of cell growth, and the induction of apoptotic cell death. The apoptotic response of these cells was manifested by nuclear condensation, DNA fragmentation, the reduction of MMP and proteasome activity, a decreased DNA content, the release of cytochrome c into the cytosol, the translocation of AIF and DFF40 (CAD) into the nucleus, a significant shift of the Bax/Bcl-2 ratio, and the activation of caspase-9, caspase-3, PARP, Lamin A/C and DFF45 (ICAD). Furthermore, NaF treatment resulted in the downregulation of G1 cell cyclerelated proteins, and upregulation of p53 and the Cdk inhibitor p27KIP1. Taken collectively, our present findings demonstrate that NaF strongly inhibits YD9 cell proliferation by modulating the expression of G1 cell cycle-related proteins and inducing apoptosis via mitochondrial and caspase pathways.
Enterococcus faecalis, a gram-positive bacterium, has been implicated in endodontic infections, particularly in chronic apical periodontitis. Proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), are involved in the pathogenesis of these apical lesions. E. faecalis has been reported to stimulate macrophages to produce TNF-α. The present study investigated the mechanisms involved in TNF-α production by a murine macrophage cell line, RAW 264.7 in response to exposure to E. faecalis. Both live and heat-killed E. faecalis induced high levels of gene expression and protein release of TNF-α. Treatment of RAW 264.7 cells with cytochalasin D, an inhibitor of endocytosis, prevented the mRNA up-regulation of TNF-α by E. faecalis. In addition, antioxidant treatment reduced TNF-α production to baseline levels. Inhibition of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase also significantly attenuated E. faecalis-induced TNF-α expression by RAW 264.7 cells. Furthermore, activation of NF-κB and AP-1 in RAW 264.7 cells was also stimulated by E. faecalis. These results suggest that the phagocytic uptake of bacteria is necessary for the induction of TNF-α in E. faecalis-stimulated macrophages, and that the underlying intracellular signaling pathways involve reactive oxygen species, ERK, p38 MAP kinase, NF-κB, and AP-1.