We estimate the enclosed mass profile in the central 10 pc of the Milky Way by analyzing the infrared photometry and the velocity observations of dynamically relaxed stellar population in the Galactic center. HST/NICMOS and Gemini Adaptive Optics images in the archive are used to obtain the number density profile, and proper motion and radial velocity data were compiled from the literature to find the velocity dispersion profile assuming a spherical symmetry and velocity isotropy. From these data, we calculate the the enclosed mass and density profiles in the central 10 pc of the Galaxy using the Jeans equation. Our improved estimates can better describe the exact evolution of the molecular clouds and star clusters falling down to the Galactic center, and constrain the star formation history of the inner part of the Galaxy.
The effects of post-CMP cleaning on the chemical and galvanic corrosion of copper (Cu) and titanium(Ti) were studied in patterned silicon (Si) wafers. First, variation of the corrosion rate was investigated as afunction of the concentration of citric acid that was included in both the CMP slurry and the post-CMP solution.The open circuit potential (OCP) of Cu decreased as the citric acid concentration increased. In contrast withCu, the OCP of titanium (Ti) increased as this concentration increased. The gap in the OCP between Cu andTi increased as citric acid concentration increased, which increased the galvanic corrosion rate between Cu andTi. The corrosion rates of Cu showed a linear relationship with the concentrations of citric acid. Second, theeffect of Triton X-100®, a nonionic surfactant, in a post-CMP solution on the electrochemical characteristics ofthe specimens was also investigated. The OCP of Cu decreased as the surfactant concentration increased. Incontrast with Cu, the OCP of Ti increased greatly as this concentration increased. Given that Triton X-100®changes its micelle structure according to its concentration in the solution, the corrosion rate of eachconcentration was tested.
In this paper, non-treated ACF (Activated Carbon Fiber) /TiO2 and Zn-treated ACF/TiO2 were prepared. The prepared composites were characterized in terms of their structural crystallinity, elemental identification and photocatalytic activity. XRD patterns of the composites showed that the non-treated ACF/TiO2 composite contained only typical single and clear anatase forms while the Zn-treated ACF/TiO2 contained a mixed anatase and rutile phase with a unique ZnO peak. SEM results show that the titanium complex particles are uniformly distributed on and around the fiber and that the titanium complex particles are more regularly distributed on and around the ACF surfaces upon an increase of the ZnCl2 concentration. These EDX spectra show the presence of peaks from the C, O and Ti elements. Moreover, peaks of the Zn element were observed in the Zn-treated ACF/TiO2 composites. The prominent photocatalytic activity of the Zn-treated ACF/TiO2 can be attributed to the three different effects of photo-degradation: doping, absorptivity by an electron transfer, and adsorptivity of porous ACFs between the Zn-TiO2 and Zn-ACF.
Placenta is the main nutrition source for the fetus during pregnancy. Thus, it has a pivotal function in the pregnant process. Many functions of the placenta have been elucidated. An abnormal placenta is associated with a high rate of pregnancy failure in somatic cloned bovine. Differentially expressed genes (DEGs) were examined in a comparison between normal and cloned bovine placenta using annealing control primer (ACP)-based GeneFishing PCR. Using 120 ACPs, nearly 80 genes were identified and the fragments of 42 DEGs were sequenced. 38 of these genes were known genes and four were unknown. To determine the DEGs result, six target clones expressing on one-side of a normal and a clone placenta were selected. Through an analysis of the target genes using the real-time PCR, the expressing pattern was found to be somewhat different from the DEGs. Additionally, several genes appeared with the same expression pattern. Taken together, this suggests that the target genes would be essential for research into what influences the placental formative mechanisms during fetal development.
The attachment and adhesion of RAW 264.7 and MC3T3-E1 cells to titanium (Ti) discs with various degrees of roughness was investigated. The attachment, adhesion, and proliferation of these cells were evaluated after 4 hr, 24 hr and 7 day incubations. Both RAW 264.7 and MC3T3-E1 cells showed a time-dependant correlation between attachment and adhesion on the surface of the titanium discs. Both types of cells tended to have higher survival rate on these discs as the surface roughness increased. The percentage of adherent inflammatory RAW 264.7 cells was greater than MC3T3-E1 cells at 24 hr, but this was reversed at 7 days in culture. The morphology of osteoblastic MC3T3-E1 cells at 24 hr, determined using a surface emission microscope (SEM), appeared flattened and spread out while inflammatory RAW 264.7 cells were predominantly spherical in shape. The adhesion of both cell types on the titanium discs was dependant on the levels of fibronectin adsorbed on the disc surface, indicating that serum constituents modulate the efficient adhesion of these cells. Our data indicate that the cellular response to the titanium surface is dependent on the types of cells, surface roughness and serum constituents.
Cyclosporin A (CsA) has been used clinically as an immunosuppressive drug to prevent organ transplant rejection and in basic research as a mitochondrial permeability blocker. It has been reported that CsA has a protective role in severed neurons and a neurotrophic effect in neuronal cells. However, the molecular mechanisms underlying the stimulation of neuronal cell proliferation by CsA have not yet been elucidated. In our current study, we investigated CsA responsive proteins in PC12 cells using a systematic proteomic approach. The viability of these cells following CsA treatment increased in a dose- and time-dependent manner. Proteins in the CsA-treated PC12 cells were profiled by two-dimensional gel electrophoresis (2-DE) and identified by matrix-assisted laser desorption ionization time-of flight (MALDI-TOF) and electrospray ionization quadupole time-of-flight mass spectrometries (EIQ-TOFMS). This differential expression analysis showed significant changes for 10 proteins (6 up-regulated and 4 down-regulated) upon CsA treatment that were related to cell proliferation, metabolism and the stress response. These proteomics data further our understanding of the proliferation mechanisms of PC12 cells exposed to CsA and demonstrate that our methodology has potential to further elucidate the mechanisms and pathways involved.
Transcriptomic changes in the brain of Limanda yokohamae were investigated to understand the environmental condition of Masan Bay, Korea. Differentially expressed genes (DEGs) in the brain of the flat fish from Masan Bay were identified by comparing those
This study aims to find a correlation between XRD and Raman result of the oxidized high modulus carbon fibers as a function of its oxidation degrees, and compare with the isotropic carbon fiber reported early. La of the high modulus carbon fiber prepared by oxidation in carbon dioxide gas have been observed using laser Raman spectroscopy. The basic structural parameters of the fibers were evaluated by XRD as well. The La of the original high modulus carbon fibers were measured to be 144 a from Raman analysis and 135 a from XRD analysis. La of the 92% oxidized fiber were 168 a by using Raman and 182 a by using XRD. There was some correlation between the La value obtained from Raman and XRD. However the La value changes of the high modulus carbon fiber through whole oxidation process showed opposite tendency compare with the isotropic carbon fiber because of the fiber structure basically.
Activated carbon (AC) is one of the most effective adsorbents for organic compounds because of their extended surface area, high adsorption capacity, microporous structure and special surface reactivity. The composites of pH-sensitive hydrogel and activated carbon were prepared in order to improve the loading capacity of drug. The pH-sensitive hydrogel matrix swelled well in the basic condition to release the drug loaded in AC. The release of drug was controlled depending on both the pH due to the ionization of the carboxylic acid group and the AC due to the surface properties.
This study was carried out to investigate effect of herbal extracts mixtures on hair growth in an alopecia model of C57BL/6 mice. There were 4 experimental groups including distilled water (DW, negative control), 25% ethanol(EtOH, vehicle control) and two herbal extract mixtures (HE-1 and HE-2). HE-1 included Polygonum and Brassica campestris extracts and HE-2 included Mulberry root and Gardenia extracts. The 6 weeks-old C57BL/6 male mice were shaved with an electric clipper and the test compounds were topically treated with 0.2 ml per mouse daily for 3 weeks. The hair re-growth was photographically determined at days 0, 4, 7, 10, 14, 17, and 21. The number of mast cells which is an important modulator of hair growth was counted in 1 cm of dorsal skin section of mice. There were no clinical signs in all experimental groups. As the results of photometric analysis, the topical application of the herbal extracts (HE-1 & 2) for 2 weeks to dorsal skin accelerated hair re-growth remarkably faster than that of DW group (p<0.05). Activity of alkaline phosphatase (ALP) was significantly increased in EtOH group compared to DW group (p<0.05). Both herbal extract mixtures also increased the ALP activity, but it was not significantly different from DW. Treatment of mice with HE-2 significantly increased mast cell population compared to EtOH. Taken together, these results suggest that herbal extract mixtures used in this study may have hair-growth promoting activities and can be useful for treatment for male pattern baldness or alopecia in humans.
We measured the degree of macrodispersion of the various single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) using UV-VIS-NIR absorption spectroscopy. CNTs were dispersed with SDS of 2 wt % in deionized water using the homogenizer and then were further centrifugated at 6000 g for 10 min. The degree of macrodispersion, expressed by Dm(λ)=Aa(λ)/Ab(λ)*100 (%), where λ is the wavelength and Aa(λ) and Ab(λ) are the absorbance of the sample after and before centrifugation, respectively. In the case of MWCNTs, we evaluated the degree of macrodispersion by the average degree of macrodispersion (Dm(λ)) between 1000 and 1200 nm. The degree of macrodispersion of SWCNTs was evaluated at the wavelength in which van Hove singularity-related transition regions were excluded, i.e., the range was chosen between E11S and E22S peaks. We have estimated six samples with the same method. The standard deviation of each sample was lower than 5. Therefore, we presented a reliable evaluation method for the macrodispersion of CNTs for standardization.
We propose an evaluation method of the relative content of single-walled carbon nanotubes (SWCNT) in SWCNT soot synthesized by arc discharge using UV-VIS-NIR absorption spectroscopy. In this method, we consider the absorbance of semiconducting and metallic SWCNTs together to calculate the relative content of SWCNTs with respect to a highly purified reference. Our method provides the more reliable and realistic evaluation of SWCNT content with respect to the whole carbonaceous content than the previously reported method.