우리나라에서 참깨나 목화에 기생하여 위조병을 일으키는데 Fusarium oxsporum f. vasinfectum의 생육에 미치는 질소원의 종류 및 농도의 영향을 구명하고자 본연구에 착수하였다. 본연구의 결과로부터 질소원의 종류 및 농도의 차이가 Fusarium oxysporum f. vasinfectum의 생육에 큰 영향을 미친다는 것을 알았다. 공시한 4종의 질소원 중에서 Nitrate N나 Urea N가 Ammonia N 또는 Ammonium and Nitrate N 보다 공시균의 생육에 대하여 더욱 알맞는 질소원이었다. 그 중에서도 Nirtrate N는 타른 N원보다 훨씬 넓은 농도범위에서 본균에 의하여 이용되므로 가장 알맞는 질소원이라고 할 수 있다. 한편 Ammonia N는 공시균의 균계생장이나 포자형성의 현저한 감소와 더불어 기형적인 파형균총 또는 염주상균계세포를 농도에 관계없이 형성하므로 질소원으로서의 이용가치가 거의 없다. Ammonia N가 공시균의 생육에 미치는 영향은 파형균총 또는 염주상균계형성으로 보아 Phenoxy 화합물이 타른 진균의 생육에 미치는 영향과 흡사하다. Ammonium and Nitrate N도 50meg. 이상의 농도에서 공시균의 균계생장 또는 포자형성을 감소시키는 한편 파형균총과 같은 이상생육이 다소간음폐되기는 하나 적제 Ammonia N에서 유래하는 파형균총을 유기하므로 알맞는 질소원이라고 생각할 수 없다. 따라서 Ammonia N 단독 또는 타질소원과 Ammonia N의 결합태는 Fusarium oxysporum f. vasifectum의 생육을 위한 질소원으로서는 부적당하다.
The demand for transportation is increasing due to the continuous generation of radioactive wastes. Especially, considering the geographical characteristics of Korea and the location characteristics of nuclear facilities, the demand for maritime transportation is expected to increase. If a sinking accident happens during maritime transportation, radioactive materials can be released into the ocean from radioactive waste transportation containers. Radioactive materials can spread through the ocean currents and have radiological effects on humans. The effect on humans is proportional to the concentration of radioactive materials in the ocean compartment. In order to calculate the concentration of radioactive materials that constantly flow along the ocean current, it is necessary to divide the wide ocean into appropriate compartments and express the transfer processes of radioactive materials between the compartments. Accordingly, this study analyzed various ocean transfer evaluation methodologies of overseas maritime transportation risk codes. MARINRAD, POSEIDON, and LAMER codes were selected to analyze the maritime transfer evaluation methodology. MARINRAD divided the ocean into two types of compartments that water and sediment compartments. And it was assumed that radionuclides are transfered from water to water or from water to sediment. Advection, diffusion, and sedimentation were established as transfer process for radionuclides between compartments. MARINRAD use transfer parameters to evaluate transer processes by advection, diffusion, and sedimentation. Transfer parameters were affected by flow rate, sedimentation rate, sediment porosity, and etc. POSEIDON also divided the ocean into two types that water and sediment compartment, each compartments was detaily divided into three vertical sub-compartment. Advection, diffusion, resuspension, sedimentation, and bioturbation were established as transport processes for radionuclides between compartments. POSEIDON also used transfer parameters for evaluating advection, diffusion, resuspension, sedimentation, and bioturbation. Transfer parameters were affected by suspended sediment rates, sedimentation rates, vertical diffusion coefficients, bioturbation factors, porosity, and etc. LAMER only considered the water compartment. It divided the water compartment into vertical detailed compartments. Diffusion, advection and sedimentation were established as the nuclide transfer processes between the compartments. To evaluated the transfer processes of nuclides for diffusion and advection, LAMER calculated the probability with generating random position vectors for radionuclides’ locations rather than deterministic methods such as MARINRAD’s transfer parameters or POSEIDON’s transfer rates to evaluate transfer processes. The results of this study can be used as a basis for developing radioactive materials’ ocean transfer evaluation model.
Heavy water primary system decontamination technology is essential to reduce worker exposure and improve safety during maintenance and decommissioning of nuclear facilities. Advanced decontamination technology development aims to secure controlled decontamination technologies that can reduce the cost of radiation exposure and dramatically reduce the amount of secondary waste generated when decontaminating large equipment and large-area facilities. We conducted a study to identify candidate corrosion inhibitors through the literature and analyze the degree of corrosion of carbon steel samples. Countries with advanced nuclear technology have developed chemical decontamination technology for the entire nuclear power generation system and applied it to the dismantling and maintenance of nuclear power plants. In the decontamination process, the corrosion oxide film must be removed. If the base metal is corroded by the decontaminant in this process, additional secondary waste is generated and treatment costs increase. Therefore, it is necessary to develop a corrosion inhibitor that inhibits the corrosion of the carbon steel base metal in the decontamination process to generate a secondary waste liquid that is favorable for waste reduction and treatment. In this presentation, a study was conducted to analyze the extent of corrosion on a carbon steel base material and identify candidate materials for corrosion inhibition testing. Samples were analyzed using optical microscopy and EPMA analysis to determine the thickness of the corroded oxide film. EPMA analysis also allowed us to map the elemental distribution of the carbon steel corrosion layer, which we plan to quantify in the future. The candidate materials for organic-based corrosion inhibitor were also selected based on their inhibition mechanism; having high electronegative elements for coordinate covalent bonding at metal surface and hydrophobic nonpolar group for preventing access of corrosive substances.The selection of candidate materials for corrosion inhibition testing was based on the mechanism of the corrosion inhibitor. Organic-based corrosion inhibitors are adsorbed by donor-acceptor interactions between metal surfaces and highly electronegative elements. Corrosion can also be inhibited by arranging hydrophobic nonpolar groups on metal surfaces in the solution direction to prevent access of corrosive substances.
Despite its advantages such as safety, unnecessary pretreatment, and decontamination of waste with complex geometry, conventional ultrasonic decontamination technology has been only used to remove loose contaminants, oil and grease, not fixed contaminants due to the limitations in increasing the intensity in the high frequency range. Thus, ultrasound has been used as an auxiliary method to accelerate chemical decontamination of radioactive wastes or chemicals were added to the solution to increase the decontamination efficiency. The recently developed high-intensity focused ultrasound (HIFU) decontamination technology overcomes these limitations by combining multiple frequencies of ultrasonic waves in a specific arrangement, making it possible to remove most fixed contaminants, including radioactive micro particles less than 1 micrometer within half an hour. KEPCO NF and EnesG developed mobile HIFU decontamination equipment and successfully demonstrated the decontamination effect on various radionuclides found in nuclear power plants by treating radioactive metal waste to the level below free release criteria. The mobile HIFU decontamination equipment used in the demonstration can be operated anywhere where water is supplied, including controlled area in nuclear power plants, and is expected to be used widely for decontamination and free release of metal radioactive wastes.
The occurrence of shear failure in a rock mass, resulting from the sliding of joint surfaces, is primarily influenced by the surface roughness and contact area of these joints. Furthermore, since joints serve as crucial conduits for the movement of water, oil, gas, and thermal energy, the aperture and geometric complexity of these joints have a significant impact on the hydraulic properties of the rock mass. This renders them critical factors in related industries. Therefore, to gain insights into the mechanical and hydraulic behavior of a rock mass, it is essential to identify the key morphological characteristics of the joints mentioned above. In this study, we quantified the morphological characteristics of tensile fractures in granitic rocks using X-ray CT imaging. To accomplish this, we prepared a cylindrical sample of Hwang-Deung granite and conducted splitting tests to artificially create tensile fractures that closely resemble rough joint surfaces. Subsequently, we obtained 2D sliced X-ray CT images of the fractured sample with a pixel resolution of approximately 0.06 mm. By analyzing the differences in CT numbers of the rock components (e.g., fractures, voids, and rock matrix), we isolated and reconstructed the geometric information of the tensile fracture in three dimensions. Finally, we derived morphological characteristics, including surface roughness, contact area, aperture, and fracture volume, from the reconstructed fracture.
Most Small Modular Reactors currently under development are pursuing designs that can demonstrate flexibility in terms of construction and operation, and seeking to adopt innovative technologies to implement them, which is a very big challenge not only from the developer’s perspective but also from the regulator’s perspective. For the successful development of SMRs, it is necessary to move away from the existing prescriptive regulatory approach and exercise regulatory flexibility to sufficiently reflect design characteristics. The reason why SMR development is actively progressing around the world is to overcome the limitations of existing Light Water Reactors. Licensing advanced reactors such as MSR, VHTR, and microreactors requires a different approach from the existing conservative regulatory framework, taking into account changing regulatory environment. With the development of information technology and artificial intelligence, new types of threats are emerging, most of which are related to nuclear security. The IAEA, as well as leading countries such as the United States and Canada, require that safety, security, and safety measures be reflected in the early stages of design (Safety, Security, Safeguards by Design) and should be applied in the regulatory process. In addition, it is recommended to design a system that can achieve synergy effects by identifying in potential issues that may cause regulatory interference between safety and security (SSI, Safety-Security Interface). The competitiveness of SMR in the international market will be highly dependent on the degree to reflect the importing countries’ requirements. Since most SMRs currently under development do not have significant differences in safety goals, multi-purpose usability, etc., it is necessary to faithfully reflect the environmental factors necessary for SMR operation in the adopting country in the design. The major issues expected are mostly nuclear security-related rather than safety, and the physical characteristics of the site including the geopolitical conditions of the importing country must be taken into consideration. In this paper, the necessity of SMR nuclear security regulation and the way how to reflect the Security by Design on SMR will be presented.
Natural radionuclides-containing substances (NORM) contain natural radionuclides and cause radiation exposure. In Korea, safety management measures were needed to deal with and dispose of radon mattresses containing monazite in relation to such NORM. However, there is no clear safety management system related to NORM waste in Korea. In order to manage this reasonably and systematically, it is necessary to investigate and analyze standards and management measures related to the treatment and disposal of NORM waste. Therefore, this study investigated and analyzed the exemption and clearance level of NORM waste regulations in international organizations and foreign countries. IAEA GSR Part 3, 2013/59/Euratom, ANSI/HPS N13.53, CRCPD SSRCR Part N, and ARPANSA Publications 15 safety management regulations were analyzed to investigate safety management standards for NORM waste. The exemption and clearance level in international organizations and foreign countries were compared and analyzed based on radioactive concentration and dose. In addition, the management measures proposed for each literature were also investigated. As a result of the analysis, IAEA GSR Part 3 applied 1 mSv as a regulatory exemption level, 1 Bq/g for uranium and thorium series as a clearance level, and 10 Bq/g for K-40 nuclides. The IAEA recommends a differential approach to the potential and scale of exposure. The EU applied 1 Bq/g to uranium and thorium families and 10 Bq/g to K-40 nuclides for both regulatory exemption and clearance levels. The EU recommended that it be managed in proportion to the scale and likelihood of exposure as a result of the action. It is analyzed that this is similar to the IAEA’s management plan. In the United States, there was no single federal government radioactive concentration and dose for NORM management. The management plan differed in management status and level from state to state, and K-40 was excluded from regulation unless it was intentionally enriched. In the case of Australia, the radioactive concentration of uranium and thorium was 1 Bq/g as a standard for regulatory exemption and 1 mSv as a dose. As a management plan, it was suggested to dispose of waste by means of accumulation, dilution/dispersion, and reclamation. It was also suggested that the scale of exposure, like international organizations, take into account the possibility. The results of this study are believed to be used as basic data for presenting domestic NORM waste treatment and disposal methods in the future.
Natural uranium-contaminated soil in Korea Atomic Energy Research Institute (KAERI) was generated by decommissioning of the natural uranium conversion facility in 2010. Some of the contaminated soil was expected to be clearance level, however the disposal cost burden is increasing because it is not classified in advance. In this study, pre-classification method is presented according to the ratio of naturally occurring radioactive material (NORM) and contaminated uranium in the soil. To verify the validity of the method, the verification of the uranium radioactivity concentration estimation method through γ-ray analysis results corrected by self-absorption using MCNP6.2, and the validity of the pre-classification method according to the net peak area ratio were evaluated. Estimating concentration for 238U and 235U with γ-ray analysis using HPGe (GC3018) and MCNP6.2 was verified by -spectrometry. The analysis results of different methods were within the deviation range. Clearance screening factors (CSFs) were derived through MCNP6.2, and net peak area ratio were calculated at 295.21 keV, 351.92 keV(214Pb), 609.31 keV, 1120.28 keV, 1764.49 keV(214Bi) of to the 92.59 keV. CSFs for contaminated soil and natural soil were compared with U/Pb ratio. CSFs and radioactivity concentrations were measured, and the deviation from the 60 minute measurement results was compared in natural soil. Pre-classification is possible using by CSFs measured for more than 5 minutes to the average concentration of 214Pb or 214Bi in contaminated soil. In this study, the pre-classification method of clearance determination in contaminated soil was evaluated, and it was relatively accurate in a shorter measurement time than the method using the concentrations. This method is expected to be used as a simple pre-classification method through additional research.
Laser scabbling has the potential to be a valuable technique capable of effectively decontaminating highly radioactive concrete surface at nuclear decommissioning sites. Laser scabbling tool using an optical fiber has a merits of remote operation at a long range, which provides further safety for workers at nuclear decommissioning sites. Furthermore, there is no reaction force and low secondary waste generation, which reduces waste disposal costs. In this study, an integrated decontamination system with laser scabbling tool was employed to test the removal performance of the concrete surface. The integrated decontamination system consisted of a fiber laser, remote controllable mobile cart, and a debris collector device. The mobile cart controlled the translation speed and position of the optical head coupled with 20 m long process fiber. A 5 kW high-powered laser beam emitted from the optical head impacted the concrete block with dimensions of 300 mm × 300 mm × 80 mm to induce explosive spalling on its surface. The concrete debris generated from the spalling process were collected along the flexible tube connected with collector device. We used a three-dimensional scanner device to measure the removed volume and depth profile.
As the importance of radioactive waste management has emerged, quality assurance management of radioactive waste has been legally mandated and the Korea Radioactive Waste Agency (KORAD) established the “Waste Acceptance Criteria for the 1st Phase Disposal Facility of the Wolsong Lowand Intermediate-Level Waste Disposal Center (WAC)”, the detailed guideline for radioactive waste acceptance. Accordingly, the Korea Atomic Energy Research Institute (KAERI) introduced a radioactive waste quality assurance management system and developed detailed procedures for performing the waste packaging and characterization methods suggested in the WAC. In this study, we reviewed the radioactive waste characterization method established by the KAERI to meet the WAC presented by the KORAD. In the WAC, the characterization items for the disposal of radioactive waste were divided into six major categories (general requirements, solidification and immobilization requirements, radiological, physical, chemical, and biological requirements), and each subcategories are shown in detail under the major classification. In order to satisfy the characterization criteria for each detailed item, KAERI divided the procedure into a characterization item performed during the packaging process of radioactive waste, a separate test item, and a characterization item performed after the packaging was completed. Based on the KAERI’s radioactive waste packaging procedure, the procedure for characterization of the above items is summarized as follows. First, during the radioactive waste packaging process, the characterization corresponding to the general requirements (waste type) is performed, such as checking the classification status of the contents and checking whether there are substances unsuitable for disposal, etc. Also, characterization corresponding to the physical requirements is performed by checking the void fraction in waste package and visual confirmation of particulate matter, substances containg free water, ect. In addition, chemical and biological requirements can be characterized by visually confirming that no hazardous chemicals (explosive, flammable, gaseous substances, perishables, infectious substances, etc.) are included during the packaging process, and by taking pictures at each packaging steps. Items for characterization using separate test samples include radiological, physical, and chemical requirements. The detailed items include identification of radionuclide and radioactivity concentration, particulate matter identification test, free water and chelate content measurement tests, etc. Characterization items performing after the packaging is completed include general requirements such as measuring the weight and height of packages and radiological requirements such as measurements of surface dose rate and contamination, etc. All of the above procedures are proceduralized and managed in the radioactive waste quality assurance procedure, and a report including the characterization results is prepared and submitted when requesting acceptance of radioactive waste. The characterization of KAERI’s radioactive waste has been systematically established and progressed under the quality assurance system. In the future, we plan to supplement various items that require further improvement, and through this, we can expect to improve the reliability of radioactive waste management and activate the final disposal of KAERI’s radioactive waste.
Currently, there are 25 nuclear power plants (NPPs) in operation in Korea, including 22 pressurized water reactors (PWRs) and three pressurized heavy water reactors (PHWRs). Two NPPs, including Kori Unit 1 and Wolsong Unit 1, are permanently shut down and awaiting decommissioning. If Kori Unit 2, which is expected to be permanently shut down soon, is included, the number of decommissioning NPPs will be increased to three. Spent fuels (SFs) are continuously generated during the NPP operation, which are stored in an SF storage pool in NPPs to cool down the decay heat emitted from SFs. For safe NPP operation, SFs must be regarded as waste, and a disposal site must be selected to isolate SFs. However, an appropriate site has yet to be selected in Korea. SFs contain long-lived nuclides with a high specific activity. For disposal, it is important to characterize the nuclides in the fuels and delay the migration of the nuclides to the environment when SFs are placed in a future disposal facility. If the disposal container is broken, the nuclides in the fuels escape from the filling material, such as bentonite. These escaped nuclides are dissolved in groundwater and migrate to the surface of the earth. Thus, it is possible to assess the radiological impact, such as the exposure dose during and after the disposal, if the types and characteristics of nuclides in SFs are known. This study investigated the nuclides in SFs and identified exposure scenarios that may occur in the disposal process of SFs and migration characteristics when the nuclides leak into groundwater to propose a dose assessment methodology for workers and the public.
In general, after the decommissioning of nuclear facilities, buildings on the site can be demolished or reused. The NSSC (Nuclear Safety and Security Commission) Notice No. 2021-11 suggests that when reusing the building on the decommissioning site, a safety assessment should be performed to confirm the effect of residual radioactivity. However, in Korea, there are currently no decommissioning experiences of nuclear power plants, and the experiences of building reuse safety assessment are also insufficient. Therefore, in this study, we analyzed the foreign cases of building reuse safety assessment after decommissioning of nuclear facilities. In this study, we investigated the Yankee Rowe nuclear power plant, Rancho Seco nuclear power plant, and Hematite fuel cycle facility. For each case, the source term, exposure scenario, exposure pathway, input parameter, and building DCGLs were analyzed. In the case of source term, each facility selected 9~26 radionuclides according to the characteristics of facilities. In the case of exposure scenario, building occupancy scenario which individuals occupy in reusing buildings was selected for all cases. Additionally, Rancho Seco also selected building renovation scenario for maintenance of building. All facilities selected 5 exposure pathways, 1) external exposure directly from a source, 2) external exposure by air submersion, 3) external exposure by deposited on the floor and wall, 4) internal exposure by inhalation, and 5) internal exposure by inadvertent ingestion. For the assessment, we used RESRAD-BUILD code for deriving building DCGLs. Input parameters are classified into building parameter, receptor parameter, and source parameter. Building parameter includes compartment height and area, receptor parameter includes indoor occupancy fraction, ingestion rate, and inhalation rate, and source parameter includes source thickness and density. The input parameters were differently selected according to the characteristics of each nuclear facility. Finally, they derived building DCGLs based on the selected source term, exposure scenario, exposure pathway, and input parameters. As a result, it was found that the maximum DCGL was 1.40×108 dpm/100 cm2, 1.30×107 dpm/100 cm2, and 1.41×109 dpm/100 cm2 for Yankee Rowe nuclear power plant, Rancho Seco nuclear power plant, and Hematite fuel cycle facility, respectively. In this study, we investigated the case of building reuse safety assessment after decommissioning of the Yankee Rowe nuclear power Plant, Rancho Seco nuclear power plant, and Hematite fuel cycle facility. Source terms, exposure scenarios, exposure pathways, input parameters, and building DCGLs were analyzed, and they were found to be different depending on the characteristics of the building. This study is expected to be used in the future building reuse safety assessment after decommissioning of domestic nuclear power plants. This work was
A large spectrum of possible stakeholders and important factors for safety improvement during decommissioning of nuclear facilities should be identified. Decommissioning includes additional aspects which are of interest to a wider range of stakeholders. The way in which local communities, the public in general, and a wide range of other parties are engaged in dialogue about decommissioning of nuclear facilities is likely to become an increasingly important issue as the scale of the activity grows. Timely stakeholder involvement may enhance safety and can encourage public confidence. Stakeholder engagement may result in attention to issues that otherwise might escape scrutiny. Public confidence is improved if issues that are raised by the public are taken seriously and are carefully and openly evaluated. Experience in many countries has shown that transparency can be an extremely effective tool to enhance safety performance. It sets out the development and implementation of an effective two-way process between the organization and stakeholders. Meaningful engagement is characterized through a flow of communication, opinions and proposals in both directions and the use of collaborative approaches to influence and explain decisions. The process is one in which an organization learns and improves its ability to perform meaningful stakeholder engagement while developing relationships of mutual respect, in place of one-off consultations. The evolving nature of this process is particularly relevant to pipeline projects, which will have differing stakeholder engagement requirements at each phase of the project lifecycle. Activity undertaken at all stages of the process should be documented to ensure engagement success can be reviewed and improved and to ensure historical decisions or engagements are captured in case stakeholders change during the progression of time and previous consultation records are required.
An induction melting facility includes several work health and safety risks. To manage the work health and safety risks, care must be taken to identify reasonably foreseeable hazards that could give rise to risks to health and safety, to eliminate risks to health and safety so far as is reasonably practicable. If it is not reasonably practicable to eliminate risks to health and safety, attention have to be given to minimize those risks so far as is reasonably practicable by implementing risk control measures according to the hierarchy of control in regulation, to ensure the control measure is, and is maintained so that it remains, effective, and to review and as necessary revise control measures implemented to maintain, so far as is reasonably practicable, a work environment that is without risks to health or safety. The way to manage the risks associated with induction melting works is to identify hazards and find out what could cause harm from melting works, to assess risks if necessary – understand the nature of the harm that could be caused by the hazard, how serious the harm could be and the likelihood of it happening, to control risks – implement the most effective control measures that are reasonably practicable in the circumstances, and to review control measures to ensure they are working as planned.
Organic waste generated by small and medium-sized (S&M-sized) metal decontamination in NPP decommissioning. To lower the concentration of these organic substances for a level acceptable at the disposal site, the project of “Development of Treatment Process of Organic Decontamination Liquid Wastes from Decommissioning of Nuclear Power Plants” is being carried out. The conditioning and treatment process of organic liquid waste was designed. Also, the literature was investigated to make simulated organic liquid waste, and the composition of these waste was analyzed and compared. As the decontamination agent, organic acids such as EDTA, oxalic acid, citric acid are used. The sum of the concentrations of these organic materials was set to a maximum value of 1,000 ppm. The major metal ions of the decontamination liquid waste estimated are 59Fe, 51Cr, 54Mn, 63Ni, and the concentrations are respectively 527, 163, 161, 159 ppm. Additional major metal ions are 60Co, 58Co, 137Cs. 58Co is replaced by 60Co because it has the same chemical properties as 60Co. Unlike the HLW, the contamination level of S&M-sized metal in primary system was quite low, so 60Co is set to 2,000 Bq/g. Considering the contribution of fission and gamma ray dose constant, 137Cs was estimated to 360 Bq/g. Also, suspended solids of decontamination liquid waste were set at 500 ppm. Under these assumptions, the simulated organic liquid waste was made, and then organic substances and metal ions were analyzed with TOC analyzer and ICP-OES. The TOC analysis value was expected to 392 ppm in consideration of the equivalent organic quantity. the test result was 302 ppm. Some of organics appears to have been decomposed by acid. The values of metal ions (Fe3+, Cr3+, Mn2+, Ni2+) analyzed by ICP-OES are 139, 4, 152, 158 ppm, respectively. A large amount of Cr3+ and Fe3+ were expected to exist as ions, but they existed in the form of suspended solid. Mn2+ and Ni2+ came out similar to the expected values. The designed conditioning and treatment process is largely divided into pretreatment, conditioning, and decomposition processes. After collecting in the primary liquid waste storage tank, large particulate impurities and suspensions are removed through a pretreatment process. In the conditioning process, treated liquid waste passes through UF/RO membrane system, and pure water is discharged to the environment after monitoring. Concentrated water is decomposed in the electrochemical catalyst decomposition process, then this water secondarily passes through the RO membrane system and then discharged to the environment after monitoring. Through an additional experiment, the conditioning and treatment process will be verified.