면진장치 중에 하나인 마찰진자시스템(FPS)은 진자의 성질을 활용하여 면진된 구조물의 고유주기를 임의로 결정할 수 있는 지진격리장치이며, 면진장치의 진자운동으로 인하여 곡률반경과 중력에 의한 고유복원력과 마찰에 의한 감쇠력을 갖는다는 장점이 있다.
마찰진자시스템은 곡률반지름과 재료의 마찰계수를 기본적인 설계변수로 하며 면진장치를 설계할 때 중요하게 작용되는 변수 중 하나이다. Coulomb 마찰이론에 따르면, 마찰계수는 상재압이나 마찰속도에 따라 그 값은 변하지 않는 일정한 값을 지닌다고 정의하고 있다. 하지만 실제로 진자운동의 속도, 상부하중 및 유지시간, 외·내 온도 등과 같은 영향을 주는 인자에 따라 마찰계수는 변한다. 여기서 마찰계수는 크게 정지마찰계수, 운동 마찰계수로 나뉠 수 있으며, 정지마찰계수는 마찰에 의한 면진장치 거동 시, 실제 면진된 구조물이 거동하는데 큰 영향을 끼치지 않는 것으로 알고 있다. 하지만, 운동 마찰계수는 마찰진자시스템의 거동에 의한 속도에 의존하여 느린 속도에서의 저속마찰계수, 평균속도 이상에서의 고속마찰계수로 분류될 수 있으며, 구조물에 적지 않은 영향을 끼치는 것으로 알고 있다. 본 연구에서는 마찰진자시스템의 마찰계수의 변화에 따라 면진된 원전 구조물의 구조적 응답 비교를 실시하고 Coulomb 마찰이론의 일정한 마찰계수를 갖는 모델과 비교·분석하여 면진장치에서의 마찰계수 영향성에 대해 검토하고자 한다.
최근 몇몇의 거대한 영향을 준 지진해일은 주로 태평양 주위에서 발생하고 있으며, 그 중 2011년 3월 11일 일본에서 발생한 지진해일은 사회적, 과학적으로 관심을 끌고 있다. 동일본 지진해일 발생으로 인해 사망(실종 포함) 20,000명 이상의 많은 인명피해와 엄청난 재산손실을 입혔다. 대한민국은 삼면이 바다로 둘러싸이고, 연안역에서 활발한 사회, 경제적인 활동이 이루어지고 있기 때문에 지진해일 발생시 피해가 클 것이라 예상된다. 이러한 지진해일 재해에 대한 방호계획이 매우 시급한 상황이므로 가장 효과적이고 경제적인 방법으로 취약지역인 연안에서 비상 대처 행동 계획을 개발해야 한다. 그럼에도 예상치 못한 지진해일 대한 피해는 계속적으로 발생되었으며, 보다 현실적인 대응 방안의 수립이 필요하다.
본 연구에서는 우리나라의 강원도 주요 항만인 삼척항에 과거 지진해일 피해사례 및 지형적 특성을 통해서 고려하여 산정하고 그 지역의 지진해일 발생시 침수방지를 위한 지진해일 보호대책을 연구하고자 한다. 삼척항 인근에 위치한 정라항 입구에 게이트 설치와 배후지역에 약 1km의 방호벽과 방호문 시설이 건설됨으로써, 주민의 생명과 재산을 안전하게 보호할 수 있을 것으로 판단된다.
해양구조물의 말뚝기초 주변에서 일어나는 세굴 현상은 구조물을 불안정하게 만들고 구조물의 기능을 잃게 만들기도 한다. 기초 주변에서 발생하는 와류는 세굴의 주된 요인이며, 그것은 유동조건, 지반조건, 기초의 형태 등에 영향을 받는다. 세굴에 의해서 해양구조물 기초말뚝의 근입깊이가 감소하면 지지력이 감소하고 구조물에 큰 변위가 일어나 결국 구조물의 붕괴로 이어지기도 한다. 본 연구에서는 해양구조물 주변에서의 세굴심을 예측하기 위해 STAR-CCM+라는 3차원 상용 CFD 소프트웨어를 이용하였다. 해저면을 높은 동점성계수와 밀도를 갖는 유체로 가정하여 VOF multiphase 모델을 이용한 세굴심 예측이 가능하도록 하였다. 이 모델은 RANS (Reynolds Averaged Navier-Stokes) 방정식 기반의 k-Є 난류모델을 해석하여 세굴심을 산정한다. 모델의 신뢰성을 확보하기 위해 실험 논문과의 비교가 이루어졌으며 유사성을 발견할 수 있었다.
철도 역사의 경우 보다 효율적인 진동 저감 대책 수립을 위해서는 열차-궤도, 궤도-구조물 등의 상호작용 및 진동의 전달 경로에 대한 고려 등이 필요하다. 또한 역사 구조물의 경우도 접속 교량과의 상호작용, 승강장, 지붕 등 부대시설과의 상호작용에 대한 고려도 필요할 수 있다. 그러나 이러한 역사 구조물과 부대시설과의 상호작용이 소음 및 진동에 미치는 영향에 대한 연구는 미미한 실정이다.
이 논문에서는 승강장과 역사 구조물간의 상호작용 분석을 통하여 소음과 진동을 저감시키는 방안에 대한 연구를 수행하였다. 특히 승강장과 역사 구조물간 연결부의 강성 및 감쇠에 대한 조절을 통한 역사 구조물의 진동 저감 가능성을 검토하였다. 진동 저감 성능은 2차원 및 3차원 유한요소 모델을 이용하여 검증하였다.
수충부란 하천형상의 영향으로 유수가 제방에 부딪혀 유속이 상대적으로 상승하는 구간을 말한다. 특히 만곡의 수충부에서는 만곡부 외측에 빠른 유속이 발생하여 제방의 침식을 야기하므로 유속의 흐름 방향을 적절히 조절하여 피해를 줄이는 수리구조물의 설계가 필요하며 대표적으로 수제를 들 수 있다. 수제는 유속을 제어하여 제방이나 하안의 침식으로부터 보호하는 기능 외에도 수생 생물들의 서식처를 제공하고 수제역 내의 재순환 영역이 하천생태 개선의 도움을 주는 등 다양한 기능들로 국내 및 국외에서 활발히 연구되고 있다. 국내에서는 직선 수로에서 수제의 방향, 투과율 변화에 따른 흐름 분리 영역, 선단유속과 선단흐름각에 대한 연구가 수행되었다. 하지만 만곡 수로의 경우, 만곡부 내 이차류 거동에 초점을 맞춘 연구가 진행되었을 뿐, 만곡 하천에서의 수제 설치로 인해 생기는 흐름 변화를 파악하고 그 효용성을 판단하기에는 부족한 실정이다. 국외의 경우, 만곡부에서 변형된 수제(vane, barb)을 설치하여 하상 형상의 변화와 3차원 흐름 패턴과 난류 특성에 대하여 정량적인 수치로 제시하였지만 변형된 수제를 설치하였다는 점에서 한계를 지니고 있다. 따라서 본 연구에서는 만곡수로에서 수리구조물의 설치로 인한 유속의 변화와 그에 따른 난류 인자들의 변화 파악하여 수충보를 보호하는 데 그 목적이 있다.
본 연구에서는 수로 길이 24.4m 주수로폭 0.5m 비탈면경사 1:2, 수로경사 2%의 사행수로에서 실험을 수행하였다. 단일수제의 설치 여부에 따라 두 가지 실험으로 나누어 수행하였으며, 하류수위 0.25m, 유량 0.13m3/sec로 흐름조건을 동일하게 하였다. 평균수심을 특성길이로 산정한 Reynolds 수는 1.35×105으로 수로 내 흐름이 난류 특성을 띄기에 충분히 큰 값을 보였다. 유속의 흐름 특성을 파악하기 위해서 Acoustic Doppler velocimeter(ADV)를 사용하였으며 흐름방향의 수직 단면에 대하여 횡방향과 수심방향에 따라 등간격으로 나누어진 65지점에서 3차원 유속을 측정하였다. 측정된 유속은 이차류와 Reynolds 전단강도와 난류운동에너지를 파악하는 데 이용되었다. 실험결과, 수리구조물 설치로 인해 만곡부 외측에서의 유속이 감소하는 것을 확인할 수 있었고, 주수로에서 제방을 향했던 유속 벡터 또한 그 편각이 감소함을 확인할 수 있었다.
최근 다양한 평면 형태의 건물이 늘어나면서 질량중심과 강성중심이 일치하지 않는 수평 비정형 구조물이 증가하고 있다. 이러한 수평 비정형 구조물은 지진 발생 시 비틀림 변형을 유발하여 예상하지 못한 지진 피해가 발생하므로 수평 비정형 구조물의 거동을 예측하는 것이 중요하다. ASCE/SEI 7-10에서는 수평 비틀림 비정형 구조물에 대해서 추가적인 기준을 적용하여 설계를 수행하도록 요구하고 있다. 본 연구에서는 지진 발생 시 편심의 영향을 평가하기 위하여 높이가 3층인 정형과 비정형 철골 모멘트 골조의 지진응답평가를 수행하였다. 정형구조물은 ASCE/SEI 7-10에 따라 응답스펙트럼해석법을 이용한 내진설계를 수행하였다. 그리고 비정형 구조물은 모멘트골조의 위치를 조정하여 편심을 갖도록 모델링하였다. 대상 구조물의 지진하중에 대한 해석을 수행하기 위하여 FEMA P695에서 사용된 원거리 지진기록 중 3가지 지진 데이터를 선정하여 탄성시간이력해석을 수행하였다. 대상 구조물의 층간변위비를 비교해본 결과, 정형과 비정형 구조물의 층간 변위비는 3층에서는 유사하였지만 1층에서 큰 차이를 보였다. 이를 통해 지진이 발생하였을 때, 편심의 영향이 층마다 다르다는 사실을 알 수 있었다.
최근 들어 전 세계적 기상이변에 의한 자연재해의 피해가 급증하고 있으며, 재난·재해의 대형화, 집중화, 세계화로 인한 위험을 조기에 발견하고, 피해를 최소화하기 위해 IT 기술을 활용한 재난관리의 필요성이 증대되고 있다. 또한, 각종 재해를 분석하는데 있어서 기존의 2차원 종이지도를 이용하는 형태에서 벗어나 수치지도, 항공영상, 위성영상 등의 다양한 데이터를 융합하여 이용하는 추세이며, 실세계에서 발생하는 재해형태를 정밀하게 해석하기 위해 3차원 지형정보 이용에 대한 관심이 높아지고 있다.
본 연구에서는 태풍, 호우, 지진 등의 자연재해 발생 시 댐, 보, 교량, 제방, 옹벽, 절토사면 등 수변구조물의 효과적인 피해정보의 추출과 분석에 적합한 3차원 정밀 Reference 데이터 구축을 위해 항공라이다, 항공영상(UAV 포함), 지상라이다 측량 등의 다양한 센서 데이터를 융합하여 자료처리를 수행하고 정확도를 평가함으로써 수변구조물의 피해분석에 효율적인 데이터 구축 기법을 제시하였다. 또한, UAV 등을 이용하여 취득된 다중 항공영상에 최신의 영상매칭 기법을 적용하여 3차원 공간정보를 추출한 후 기 구축된 3차원 Reference 데이터와 비교함으로써 수변구조물의 정량적인 피해분석 가능성과 한계를 분석하였다.
수변구조물 스마트 피해복구 지원시스템은 태풍이나 홍수 등 자연재해에 의해 수변구조물에 피해가 발생했을 때, 대책본부가 피해 상황을 신속히 파악해 가장 적절한 피해복구가 이루어질 수 있도록 지원한다. 본 시스템은 실시간 피해분석, 1단계 복구(응급복구), 2단계 복구(장기복구) 지원 기능을 가지고 있으며, 각 단계별로 총 35개의 세부 기능으로 구성되도록 설계하였다. 신속하고 정확한 피해분석을 위하여 무인항공기 및 지상 CCTV 정보를 활용하여 피해가 발생한 시설물의 부위별 피해유형과 크기를 지능적으로 판단하며, 스마트 영상정보와 센서정보, 구조해석 정보를 바탕으로 피해의 유효성을 판단하여 응급 복구 가능성 여부를 판단하게 된다. 수재해에 의해서 주로 발생하는 수변구조물별 피해유형에 대해서 복구 시나리오를 사전에 구축하여 가장 적절한 복구 공종 및 공법을 자동으로 도출하며, 투입되는 복구 자원을 효과적으로 할당하고, 복구상황을 관리하게 된다. 긴급 상황이 종료되고 장기복구가 필요한 경우에는 장기복구 실행계획을 도출하여 복구계획 사용에 사용될 수 있도록 하였다. 아울러 이 시스템은 지속적인 복구관리가 가능하며 추가적인 피해 발생 요인도 예견할 수 있어, 현장에 적용되면 시설물 관리 책임자를 효과적으로 지원할 수 있을 것이다.
국내에서는 재난 및 안전관리 기본법에 명시된 재난관리 책임기관과 주관기관에 의해 재난안전관리가 수행되고 있으며, 각 기관들은 개별적으로 시스템을 개발 또는 운영 하고 있다. 정보기술의 발달과 더불어 다양한 시스템 개발이 진행되고 있지만, 시스템 개발과정에서 발생 가능한 여러 가지 문제들과 개발 후 시스템 적용에서 생긴 문제점들로 인해 실용화에 실패하였거나 유사한 시스템 개발로 인한 혼란 등이 야기되고 있다. 지금까지 개발된 시스템들의 경우, 이러한 문제점을 해결하기 위해 기존 서비스의 강화, 신규 서비스 추가 등을 통해 혼재된 시스템들이 하나로 통합되거나 기존의 다양한 시스템과 연계되어 만들어지고 있으나 시스템들이나 구조적 측면, 운영/관리 측면에서의 개선은 아직까지 이루어지고 있지 못한 실정이다.
본 연구에서는 국내외 재난방재분야 플랫폼 개발 현황을 조사 분석하고, 기존 시스템으로부터 파악된 문제점과 그에 대한 방안들을 현재 개발 중에 있는 수변구조물 통합안전관리 플랫폼의 설계 단계에서부터 개선 반영하도록 하여 시스템의 목적, 대상 시설물 그리고 시스템 사용자가 고려될 수 있는 효율적인 시스템 구축방안을 제시하고자 한다.
Images created by stack imaging spectral amplitudes based on the impact-echo (SIBIE) method are largely one-dimensional because a single frequency domain spectrum for waves reflected below a single point of impact is used to create them. The method has limitations for representing defects in a cross section of a concrete structural element using two-dimensional coordinates. This study focused on defect detection and visualization in a concrete structural element using multiple impacts and accumulated SIBIE. An impactor was used to induce energy at multiple points positioned at prescribed intervals along the structural element. A modified SIBIE method was applied to the collected data for each point and the modified SIBIE images were accumulated to generate one image (an accumulated SIBIE image). As a result, the defect positions could be represented in the cross section of the structural element using a two-dimensional coordinate system. And the method appears to improve upon existing methods to detect voids or other defects in concrete.
구조물에 최적화된 센서 배열(Sensor Array)을 수행하는 것은 센서 네트워크 설계에서 중요한 요소이다. 그러나 센서의 설치와 관리는 구조물이 처해 있는 환경이나, 경제성 그리고 센서의 주파수대역의 제한과 같은 다양한 원인으로 인해 매우 어려울 수 있다. 이 논문에서는 일반적인 문제와 환경에서 현재 사용되고 있는 물리적 센서 대용으로 가상 시각 센서(VVS: Virtual Visual Sensor)를 제안하였다.
가상 시각 센서는 설치가 간편하고 경제적이며 관리가 편하다는 큰 장점을 가지고 있다. 이러한 가상 시각 센서의 기본적인 아이디어는 최첨단 컴퓨터 시각 알고리즘과 마커 추출 기법의 적용으로 이루어진다. 이 연구에서는 가상 시각 센서를 이용하여 모드 형태와 주파수를 추출하는데 용이하다는 점을 보여주며 이를 구조물 건전성 모니터링에 적용할 경우 효율적이라는 점을 입증하였다.
최근에 건설분야 RC구조물의 시공도중 및 완공 이후에 이산화탄소 및 염소이온 등의 외기환경 노출과 콘크리트자체의 열화로 구조물의 사용성 및 구조성능 저하를 초래할 수 있다. 재료 및 시공적 측면에서 콘크리트의 탄산화 및 균열과 철근부식을 억제하고 제어할 수 있는 다양한 기술과 연구결과가 개발되고 소개되고 있다.
본 특집기사에서는 RC구조물을 건설하는데 있어 콘크리트의 내외부적인 요인에 의해 발생될 수 있는 열화와 그에 대한 대책과 관련된 최근기술 및 공법을 소개함으로써 관련기술에 관심을 갖고 있는 실무자나 연구자에게 유용한 자료를 제공하고자 한다. 첫째로, 동절기에 시공되는 옥외노출 콘크리트 수평부재에 동결융해로 인한 사용성 및 내구성 저하의 발생원인과 저감방법을 조사하는 기술을, 두번째로, 해상에 건설되는 콘크리트 토목구조물의 염해로 인한 콘크리트 및 철근의 열화요인과 대책에 대해 케이슨 구조물의 시공사례소개와, 마지막으로, 콘크리트의 수축에 의한 균열문제를 해결하기 위해 개발된 원통거푸집을 이용한 팽창콘크리트의 구속팽창 시험방법에 대한 개요와 활용사례에 대해 소개한다.
향후, 콘크리트 구조물의 열화에 따른 보수 및 보강에 관련된 첨단기술을 다시 소개하는 장을 마련할 수 있었으면 합니다.
최근 전력 전송을 위해 지하에 건설되는 전력구 구조물이 증가함에 따라, 이러한 구조물의 수명 연장은 매우 중요한 문제로 대두되고 있다. 현재까지의 현장 및 실험결과들은 콘크리트 내부의 철근이 콘크리트 피복의 탄산화 현상에 의해 부식될 수 있음을 보이고 있으며,이러한 탄산화에 의한 철근의 부식은 구조물 주변의 높은 이산화탄소 농도에 의해 빈번히 발생할 가능성을 내포하고 있다. 따라서, 본 연구에서는 실제 전력구 현장에서의 철근 깊이와 탄산화 깊이를 측정한 결과를 바탕으로 우리나라의 전력구 콘크리트 구조물에 대한 탄산화위험도를 평가하였다. 현장 데이터를 기반으로 철근 주변에서의 탄산화에 의한 전력구의 사용수명을 평가하였으며, 이를 위해 확률론적 방법인 몬테카를로 기법을 적용하였다. 또한 균열을 유발한 시험체에 대한 탄산화 촉진 실험을 수행하여, 그 실험결과를 바탕으로 균열을 고려한 경우의 전력구의 사용수명을 수치적으로 평가하고 분석하였다.
본 연구는 고립파를 이용하여 수중에 설치된 연직구조물에 작용하는 지진해일 파력 측정 수리실험을 수행하였다. 다수의 파압계를 이용하여 구조물에 작용하는 파압분포를 측정하였고 측정된 파압분포를 통해 파력을 산출하였다. 측정된 실험결과를 바탕으로 해안구조물 설계에 사용되는 파압예측 경험식과 비교하였고 구조물 단면현상에 따라 파압분포의 차이를 분석하였다. 또한, 구조물 전 후면에서 파고측정을 통해 입사파와 투과파를 비교하였으며 구조물의 형상이 파고변화에 미치는 영향을 분석하였다.
In this study, the chemical resistance of polyurea resin waterproofing and anti-corrosion materials that is applied to the social infrastructure was analyzed. Mostly, there are three the main materials which is polyurea resin waterproofing and anti-corrosion, polyurea resin waterproofing and anti-corrosion, polyurethan-polyurea waterproofing and anti-corrosion, and polyurethane waterproofing and anti-corrosion were analyzed as the specimen. As a result of chemically resistant characteristic to three kinds of polyure type materials, it’s polyurethane, polyurea-urethane, and polyurea were arranged in the order. This order is generally predictable order that is expected by any user, but it was settled first by the quantitative evidence of chemical evaluation in this time. And, the result in this study will be utilizing as a basic data for establishing the quality standards which are able to judge the chemically resistant characteristic of polyurea resin waterproofing and anti-corrosion materials.
Recently, most underground structures are used parking lot and artificial ground greening is growing on the top of the structures also. Various waterproofing-root resistance materials and methods has been developing to artificial ground greening system based on concrete structures. However, It is hard to confirm proper quality control standard of waterproofing-root resistance materials because of complicated environment and conditions of special site which is artificial ground greening. This study goals to develop a evaluaion techniques to mak sure of the long term stability waterproofing-root resistance material on artificial ground greening system.