In this study, a design procedure for the practical application of the dampers to building structures under earthquake loads was presented by using earthquake response spectrum. Nonlinear time history results using a 10 story building structure installed with damper verified the effectiveness of the proposed procedure by showing that the structural response could be reduced to the target performance level for seismic loads. Since the proposed design procedures are based on response spectrum seismic analysis result of the original structure, the capacity, location and the number of damper and the consequent response reduction effects can be preliminarily determined without performing the nonlinear time history analysis.
In this paper, the shape adjustment algorithm of the spoked wheel cable structures with retractable membrane system is studied. The initial tension of the membrane or cable is necessary to form the structure and its value is determined by the design shape. However, due to internal and external environmental influences, its shape may be different from the initial designed shape. In the case of the cable structures covered in this study, tension adjustment is necessary to maintain the designed shape because it influences the tension of the cable depending on the state of the retractable membrane. Therefore, we proposed an adjustment algorithm of an initial shape based on the force method. The effectiveness and validity of the methodology were examined through the applicable cable structures. The results of the shape adjustment analysis of the symmetric spoked wheel cable model were reliable and accurate results were obtained.
우리나라의 바람은 계절풍, 태풍, 저기압 전선풍으로 나눌 수 있다. 또한 우리나라는 산지가 많고 삼면이 바다로 둘러싸인 지 리적인 특성도 갖고 있다. 이로 인해 각 지역의 풍향마다 풍속이 균일하게 불어오지 않는다. 내풍설계 시 사용하는 풍속은 건축구조기 준에 규정된 100년 재현기대풍속을 전풍향에 대해 동일하게 사용한다. 이 값은 풍향을 고려하지 않기 때문에 다소 보수적인 설계가 될 수 있다. 이 연구에서는 10개 지역을 대상으로 16풍향에 대한 분풍속을 수집하여 풍향별 100년 재현기대풍속을 산출하였다. 기상청에 서 수집한 자료를 균질하게 하기 위해 풍향별로 유효높이를 고려하였고, 지표면조도구분을 하는 방법으로 가스트계수방법과 목측방법을 사용하였다. 풍향별 100년 재현기대풍속을 산정하기 위한 확률분포는 Gumbel분포를 사용하였고, 경험적 초과확률로는 Hazen방법 을 이용하였으며, Gumbel분포와 Hazen방법의 적합성은 적합성평가함수에 의해 판단하였다. 이것을 토대로 각 지역의 풍향계수를 산출하였고, 풍향계수의 비교를 통해 지역별, 풍향별 풍속의 특성을 파악하였다.
A wireless sensor network is emerging technology and intelligent wireless communication paradigm that is dynamically aware of its surrounding environment. It is also able to respond to it in order to achieve reliable and efficient communication. The dynamical cognition capability and environmental adaptability rely on organizing dynamical networks effectively. However, optimally clustering the cognitive wireless sensor networks is an NP-complete problem.
The objective of this paper is to develop an optimal sensor network design for maximizing the performance. This proposed Ranking Artificial Bee Colony (RABC) is developed based on Artificial Bee Colony (ABC) with ranking strategy. The ranking strategy can make the much better solutions by combining the best solutions so far and add these solutions in the solution population when applying ABC. RABC is designed to adapt to topological changes to any network graph in a time. We can minimize the total energy dissipation of sensors to prolong the lifetime of a network to balance the energy consumption of all nodes with robust optimal solution. Simulation results show that the performance of our proposed RABC is better than those of previous methods (LEACH, LEACH-C, and etc.) in wireless sensor networks. Our proposed method is the best for the 100 node-network example when the Sink node is centrally located.
The manufacturing companies under Make-To-Order (MTO) production environment face highly variable requirements of the customers. It makes them difficult to establish preemptive production strategy through inventory management and demand forecasting. Therefore, the ability to establish an optimal production schedule that incorporates the various requirements of the customers is emphasized as the key success factor.
In this study, we suggest a process of designing the simulation model for establishing production schedule and apply this model to the case of a flat glass processing company. The flat glass manufacturing industry is under MTO production environment. Academic research of flat glass industry is focused on minimizing the waste in the cutting process. In addition, in the practical view, the flat glass manufacturing companies tend to establish the production schedule based on the intuition of production manager and it results in failure of meeting the due date. Based on these findings, the case study aims to present the process of drawing up a production schedule through simulation modeling. The actual data of Korean flat glass processing company were used to make a monthly production schedule. To do this, five scenarios based on dispatching rules are considered and each scenario is evaluated by three key performance indicators for delivery compliance. We used B2MML (Business To Manufacturing Markup Language) schema for integrating manufacturing systems and simulations are carried out by using SIMIO simulation software. The results provide the basis for determining a suitable production schedule from the production manager's perspective.
최근 의료 기술의 발전과 건강한 삶에 대한 인식이 중요해짐에 에 따라 고령화 사회가 급속히 진행 되는 경향이 있다. 그러나 노인들은 신체활동과 사회활동에 소극적이다. 이러한 환경 요인을 고려한 적절한 운동기기가 필요하다. 전신 진동기기의 경우 노인의 근력강화, 자세균형, 보행 기능에 긍정적인 효과들이 검증되었다. 노인 운동기기의 경우 고려해야할 부분으로는 다음과 같다. 첫째, 흥미와 적극적 참여를 유발하고, 사용자에 대한 동기부여에 있어 다른 프로그램의 적용보다 효과적이어야 한다. 둘째, 이동의 불편함이 없고, 무엇보다 안전하여야 한다. 가상현실을 이용한 운동 프로그램의 경우 쉽고 간편하게 다양한 종류의 운동적용이 가능하다. 그러나 아직 노인들에게 필요한 가상현실 운동기구가 다양하게 제공되지 않고 있다. 특히 가상현실 전신진동기기의 경우 아직 연구와 개발이 진행되고 있는 상황이다. 본 논문은 기존 연구를 바탕으로 전신진동기기를 활용한 가상현실 콘텐츠와 연동할 수 있는 전신진동기기를 제안한다. 또한 운동으로써의 긍정적인 효과를 가질 수 있도록 지능형 레벨 시스템을 적용한다. 지능형 레벨 시스템의 고려 사항으로는 게임레벨에 필요한 적절한 레벨 함수의 도출이다. 즉 운동능력에 적합한 레벨을 자동으로 결정해 줄 수 있는 효율적인 자동레벨 결정시스템의 적용이다. 연구 방법으로는 첫째, 전신 진동기기에 적합한 가상현실 콘텐츠를 제안한다. 전신진동기기는 노인들이 흥미를 가지고 몰입할 수 있도록 설계되어야 한다. 둘째, 다양한 센스를 지원할 수 있게 인터페이스를 설계한다. 셋째, 운동에 대한 보상 요소를 제공하여 만족도와 성취감을 얻도록 설계한다.
In the modern industrial period, the introduction of mass production was most important progress in civilization. Die-casting process is one of main methods for mass production in the modern industry. The aluminum die-casting in the mold filling process is very complicated where flow momentum is the high velocity of the liquid metal. Actually, it is almost impossible in complex parts exactly to figure the mold filling performance out with the experimental knowledge. The aluminum die-castings are important processes in the automotive industry to produce the lightweight automobile bodies. Due to this condition, the simulation is going to be more critical role in the design procedure. Simulation can give the best solution of a casting system and also enhance the casting quality. The cost and time savings of the casting layout design are the most advantage of Computer Aided Engineering (CAE)..
Generally, the relations of casting conditions such as injection system, gate system, and cooling system should be considered when designing the casting layout. Due to the various relative matters of the above conditions, product defects such as defect extent and location are significantly difference. In this research by using the simulation software (AnyCasting), CAE simulation was conducted with three layout designs to find out the best alternative for the casting layout design of an automotive Oil Pan_BJ3E. In order to apply the simulation results into the production die-casting mold, they were analyzed and compared carefully. Internal porosities which are caused by air entrapments during the filling process were predicted and also the results of three models were compared with the modifications of the gate system and overflows. Internal porosities which are occurred during the solidification process are predicted with the solidification analysis. And also the results of the modified gate system are compared.
Heat treatment of metals is an necessary process for obtaining properties required for metals. However, the heat treatment sector is labor intensive enough to be classified as an unwanted sector. In particular, in the case of quenching during the heat treatment, in order to select the defective product due to the collision caused by the collision between the products when the product is dropped in the oil tank during the quenching process, the labor is not concentrated on the heat treatment as the main process, It is a fact that it is put in. In this paper, in order to solve the labor - intensive nature, this paper designed and tested prototype products for the selection of defective products during the heat treatment process of the ball stud. The ball stud inspection device is divided into two parts, a ball stud supply device and an inspection device, and describes the concept design and prototype production contents. The performance of the prototype was evaluated by examining 1000 samples with 5 items. The manufactured ball stud inspection system will contribute to the relaxation of the avoidance phenomenon of the heat treatment industry and contribute to the efficiency and competitiveness of the work.
In the power steering systems used for automobiles, because of its small size and low noise, a balanced type hydraulic vane pump is mainly used as a power source. Therefore it is requested to research on the lubrication characteristics of a oil hydraulic vane pump which is the key part to improve its performance. The performance of a oil hydraulic vane pump is influenced by the lubrication characteristics of the critical sliding components. Thus, lubrication characteristics between the shaft and the journal bearing have to be researched for the design and the performance improvement of a oil hydraulic vane pump. Therefore, in this paper, it is theoretically investigated that the lubrication characteristics between the shaft and the journal bearing of a balanced type oil hydraulic vane pump for power steering systems. The results demonstrate that lubrication characteristics are significantly influenced by the clearance between the shaft and the journal bearing.