검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13,900

        261.
        2024.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study is to manufacture a titanium dioxide (TiO2) photocatalyst by recycling sludge generated using titanium tetrachloride (TiCl4) as a coagulant. Compared to general sewage, a TiCl4 coagulant was applied to dyeing wastewater containing a large amount of non-degradable organic compounds to evaluate its performance. Then the generated sludge was dried and fired to prepare a photocatalyst (TFS). Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), and nitrogen oxide reduction experiments were conducted to analyze the surface properties and evaluate the photoactive ability of the prepared TFS. After using titanium tetrachloride (TiCl4) as a coagulant in the dyeing wastewater, the water quality characteristics were measured at 84 mg/L of chemical oxygen demand (COD), 10 mg/L of T-N, and 0.9 mg/L of T-P to satisfy the discharge water quality standards. The surface properties of the TFS were investigated and the anatase crystal structure was observed. It was confirmed that the ratio of Ti and O, the main components of TiO2, accounted for more than 90 %. As a result of the nitric oxide (NO) reduction experiment, 1.56 uMol of NO was reduced to confirm a removal rate of 20.60 %. This is judged to be a photocatalytic performance similar to that of the existing P-25. Therefore, by applying TiCl4 to the dyeing wastewater, it is possible to solve the problems of the existing coagulant and to reduce the amount of carbon dioxide generated, using an eco-friendly sludge treatment method. In addition, it is believed that environmental and economic advantages can be obtained by manufacturing TiO2 at an eco-friendly and lower cost than before.
        4,000원
        262.
        2024.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The separation of zirconium and hafnium using tributyl phosphate (TBP)-Dodecane extractants in nitric acid medium was performed. Zirconium oxychloride, used as extraction feed, was obtained from the synthesis of Kalimantan zircon sand concentrate smelted using NaOH. The extraction process was carried out by dissolving chloride-based metals in nitric acid media in the presence of sodium nitrate using TBP-Dodecane as an extractant. Some of the extraction parameters carried out in this study include variations in organic phase and aqueous phase (O/A), variations in contact time, and variations in nitric acid concentration. Extraction was carried out using a mechanical shaker according to the parameter conditions. X-ray fluorescence (XRF) was used for elemental (Zr and Hf) composition analysis of the aqueous solution. The results showed that zirconium was separated from hafnium at optimum conditions with an organic/aqueous ratio of 1:5, contact time of 75 min, and an HNO3 concentration of 7 M. The resulting separation factor of zirconium and hafnium using TBP-Dodecane was 14.4887.
        4,000원
        263.
        2024.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        La modified lead zirconate titanate ceramics (Pb0.92La0.08)(Zr0.95Ti0.05)O3 = PLZT-8/95/5 were prepared using the conventional solid state reaction method in order to investigate the complex impedance characteristics of the PLZT-8/95/5 ceramic according to temperature. The complex impedance in the PLZT-8/95/5 ceramic was measured over a temperature range of 30~550 °C at several frequencies. The complex dielectric constant anomaly of the phase transition was observed near TU1 = 179 °C and TU2 = 230 °C. A remarkable diffuse dielectric constant anomalous behaviour of the complex dielectric constant was found between 100 °C and 550 °C. The complex impedance spectra below and above TU1 and TU2 were fitted by the superposition of two Cole-Cole types of impedance relaxations. The fast component in the higher frequency region may be due to ion migration in the bulk, and the slow component in the lower frequency region is interpreted to be the formation and migration of ions at the grain boundary or electrode/crystal interfacial polarization.
        4,000원
        264.
        2024.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Gas identification techniques using pattern recognition methods were developed from four micro-electronic gas sensors for noxious gas mixture analysis. The target gases for the air quality monitoring inside vehicles were two exhaust gases, carbon monoxide (CO) and nitrogen oxides (NOx), and two odor gases, ammonia (NH3) and formaldehyde (HCHO). Four MEMS gas sensors with sensing materials of Pd-SnO2 for CO, In2O3 for NOX, Ru-WO3 for NH3, and hybridized SnO2-ZnO material for HCHO were fabricated. In six binary mixed gas systems with oxidizing and reducing gases, the gas sensing behaviors and the sensor responses of these methods were examined for the discrimination of gas species. The gas sensitivity data was extracted and their patterns were determined using principal component analysis (PCA) techniques. The PCA plot results showed good separation among the mixed gas systems, suggesting that the gas mixture tests for noxious gases and their mixtures could be well classified and discriminated changes.
        4,000원
        265.
        2024.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This review explores the potential of pillared bentonite materials as solid acid catalysts for synthesizing diethyl ether, a promising renewable energy source. Diethyl ether offers numerous environmental benefits over fossil fuels, such as lower emissions of nitrogen oxides (NOx) and carbon oxides (COx) gases and enhanced fuel properties, like high volatility and low flash point. Generally, the synthesis of diethyl ether employs homogeneous acid catalysts, which pose environmental impacts and operational challenges. This review discusses bentonite, a naturally occurring alumina silicate, as a heterogeneous acid catalyst due to its significant cation exchange capacity, porosity, and ability to undergo modifications such as pillarization. Pillarization involves intercalating polyhydroxy cations into the bentonite structure, enhancing surface area, acidity, and thermal stability. Despite the potential advantages, challenges remain in optimizing the yield and selectivity of diethyl ether production using pillared bentonite. The review highlights the need for further research using various metal oxides in the pillarization process to enhance surface properties and acidity characteristics, thereby improving the catalytic performance of bentonite for the synthesis of diethyl ether. This development could lead to more efficient, environmentally friendly synthesis processes, aligning with sustainable energy goals.
        4,300원
        266.
        2024.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Because collagen is inherently piezoelectric, research is being actively conducted to utilize it to harvest energy. In this study, a collagen solution was prepared using edible low-molecular-weight peptide collagen powder, and collagen films were fabricated using a dip coating method. The collagen films prepared by dip coating showed a smooth surface without defects such as pinholes or cracks. Dehydrothermal treatment of the collagen films was performed to induce a stable molecular structure through cross-linking. The collagen film subjected to dehydrothermal treatment at 110 °C for 24 h showed a thickness reduction rate of 19 %. Analysis of the collagen films showed that the crystallinity of the collagen film improved by about 7.9 % after dehydrothermal treatment. A collagen film-based piezoelectric nanogenerator showed output characteristics of approximately 13.7 V and 1.4 μA in a pressure test of 120 N. The generator showed a maximum power density of about 2.91 mW/m2 and an output voltage of about 8~19 V during various human body movements such as finger tapping. The collagen film-based piezoelectric generator showed improved output performance with improved crystallinity and piezoelectricity after dehydrothermal treatment.
        4,000원
        267.
        2024.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To fabricate intermetallic nanoparticles with high oxygen reduction reaction activity, a high-temperature heat treatment of 700 to 1,000 °C is required. This heat treatment provides energy sufficient to induce an atomic rearrangement inside the alloy nanoparticles, increasing the mobility of particles, making them structurally unstable and causing a sintering phenomenon where they agglomerate together naturally. These problems cannot be avoided using a typical heat treatment process that only controls the gas atmosphere and temperature. In this study, as a strategy to overcome the limitations of the existing heat treatment process for the fabrication of intermetallic nanoparticles, we propose an interesting approach, to design a catalyst material structure for heat treatment rather than the process itself. In particular, we introduce a technology that first creates an intermetallic compound structure through a primary high-temperature heat treatment using random alloy particles coated with a carbon shell, and then establishes catalytic active sites by etching the carbon shell using a secondary heat treatment process. By using a carbon shell as a template, nanoparticles with an intermetallic structure can be kept very small while effectively controlling the catalytically active area, thereby creating an optimal alloy catalyst structure for fuel cells.
        4,000원
        268.
        2024.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we undertook detailed experiments to increase hydrogen production efficiency by optimizing the thickness of titanium dioxide (TiO2) thin films. TiO2 films were deposited on p-type silicon (Si) wafers using atomic layer deposition (ALD) technology. The main goal was to identify the optimal thickness of TiO2 film that would maximize hydrogen production efficiency while maintaining stable operating conditions. The photoelectrochemical (PEC) properties of the TiO2 films of different thicknesses were evaluated using open circuit potential (OCP) and linear sweep voltammetry (LSV) analysis. These techniques play a pivotal role in evaluating the electrochemical behavior and photoactivity of semiconductor materials in PEC systems. Our results showed photovoltage tended to improve with increasing thickness of TiO2 deposition. However, this improvement was observed to plateau and eventually decline when the thickness exceeded 1.5 nm, showing a correlation between charge transfer efficiency and tunneling. On the other hand, LSV analysis showed bare Si had the greatest efficiency, and that the deposition of TiO2 caused a positive change in the formation of photovoltage, but was not optimal. We show that oxide tunneling-capable TiO2 film thicknesses of 1~2 nm have the potential to improve the efficiency of PEC hydrogen production systems. This study not only reveals the complex relationship between film thickness and PEC performance, but also enabled greater efficiency and set a benchmark for future research aimed at developing sustainable hydrogen production technologies.
        4,000원
        269.
        2024.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the surfaces of two gold nanoparticles of different shapes were modified with hexadecyltrimethylammonium bromide (CTAB) and used for contact lenses. The polymer was based on 2-hydroxyethyl methacrylate (HEMA), and spherical and sea urchin-shaped gold nanoparticles were used as additives. CTAB was used to modify the surface of the sea urchin-shaped gold nanoparticles. To analyze the physical properties of the prepared contact lens, optical transmittance, refractive index, water content, contact angle, and atomic force microscope (AFM) were measured and evaluated. The results showed the nanoparticles did not significantly affect optical transmittance, refractive index, or water content of the lens, and tensile strength increased according to the ratio of the additive. The addition of the sea urchin-shaped nanoparticles resulted in lower wettability compared with the spherical nanoparticles, but somewhat superior tensile strength. In addition, it was found that the wettability of the lens was improved when the surface-modified sea urchin-shaped gold nanoparticles were added. The types of gold nanoparticles and surface modification methods used in this study are considered to have great potential for use in ophthalmic materials.
        4,000원
        270.
        2024.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, NASICON-type Li1+XGaXTi2-X(PO4)3 (x = 0.1, 0.3 and 0.4) solid-state electrolytes for all-solid-state batteries were synthesized through the sol-gel method. In addition, the influence on the ion conductivity of solid-state electrolytes when partially substituted for Ti4+ (0.61Å) site to Ga3+ (0.62Å) of trivalent cations was investigated. The obtained precursor was heat treated at 450 °C, and a single crystalline phase of Li1+XGaXTi2-X(PO4)3 systems was obtained at a calcination temperature above 650 °C. Additionally, the calcinated powders were pelletized and sintered at temperatures from 800 °C to 1,000 °C at 100 °C intervals. The synthesized powder and sintered bodies of Li1+XGaXTi2-X(PO4)3 were characterized using TGDTA, XRD, XPS and FE-SEM. The ionic conduction properties as solid-state electrolytes were investigated by AC impedance. As a result, Li1+XGaXTi2-X(PO4)3 was successfully produced in all cases. However, a GaPO4 impurity was formed due to the high sintering temperatures and high Ga content. The crystallinity of Li1+XGaXTi2-X(PO4)3 increased with the sintering temperature as evidenced by FE-SEM observations, which demonstrated that the edges of the larger cube-shaped grains become sharper with increases in the sintering temperature. In samples with high sintering temperatures at 1,000 °C and high Ga content above 0.3, coarsening of grains occurred. This resulted in the formation of many grain boundaries, leading to low sinterability. These two factors, the impurity and grain boundary, have an enormous impact on the properties of Li1+XGaXTi2-X(PO4)3. The Li1.3Ga0.3 Ti1.7(PO4)3 pellet sintered at 900 °C was denser than those sintered at other conditions, showing the highest total ion conductivity of 7.66 × 10-5 S/cm at room temperature. The total activation energy of Li-ion transport for the Li1.3Ga0.3Ti1.7(PO4)3 solidstate electrolyte was estimated to be as low as 0.36 eV. Although the Li1+XGaXTi2-X(PO4)3 sintered at 1,000 °C had a relatively high apparent density, it had less total ionic conductivity due to an increase in the grain-boundary resistance with coarse grains.
        4,000원
        271.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The abdominal drawing-in maneuver (ADIM), a method of lumbar stabilization training, is an effective neuromuscular intervention for lumbar instability associated with low back pain (LBP). Objects: The purpose of this study was to compare the effect of a 2-week period of the ADIM and tensor fasciae latae-iliotibial band (TFL-ITB) self-stretching on lumbopelvic rotation angle, lumbopelvic rotation movement onset, TFL-ITB length, and pain intensity during active prone hip lateral rotation. Methods: Twenty-two subjects with lumbar extension rotation syndrome accompanying shortened TFL-ITB (16 males and 6 females) were recruited for this study. The subjects were instructed how to perform ADIM training or ADIM training plus TFL-ITB self-stretching program at home for a 2-week period. A 3-dimensional ultrasonic motion analysis system was used to measure the lumbopelvic rotation angle and lumbopelvic rotation movement onset. An independent t-test was used to determine between-group differences for each outcome measure (lumbopelvic rotation angle, lumbopelvic rotation movement onset, TFL-ITB length, and pain intensity). Results: The results showed that ADIM training plus TFL-ITB self-stretching decreased the lumbopelvic rotation angle, delayed the lumbopelvic rotation movement onset, and elongated the TFL-ITB significantly more than did ADIM training alone. Pain intensity was lower in the ADIM training plus TFL-ITB self-stretching group than the ADIM training alone group; however, the difference was not significant. Conclusion: ADIM training plus TFL-ITB self-stretching performed for a 2-week period at home may be an effective treatment for modifying lumbopelvic motion and reducing LBP.
        4,000원
        272.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Limitations of shoulder range of motion (ROM), particularly shoulder internal rotation (SIR), are commonly associated with musculoskeletal disorders in both the general population and athletes. The limitation can result in connective tissue lesions such as superior labrum tears and symptoms such as rotator cuff tears and shoulder impingement syndrome. Maintaining the center of rotation of the glenohumeral joint during SIR can be challenging due to the compensatory scapulothoracic movement and anterior displacement of the humeral head. Therefore, observing the path of the instantaneous center of rotation (PICR) using the olecranon as a marker during SIR may provide valuable insights into understanding the dynamics of the shoulder joint. Objects: The aim of the study was to compare the displacement of the olecranon to measure the rotation control of the humeral head during SIR in individuals with and without restricted SIR ROM. Methods: Twenty-four participants with and without restricted SIR ROM participated in this study. The displacement of olecranon was measured during the shoulder internal rotation control test (SIRCT) using a Kinovea (ver. 0.8.15, Kinovea), the 2-dimensional marker tracking analysis system. An independent t-test was used to compare the horizontal and vertical displacement of the olecranon marker between individuals with and without restricted SIR ROM. The statistical significance was set at p < 0.05. Results: Vertical displacement of the olecranon was significantly greater in the restricted SIR group than in the control group (p < 0.05). However, no significant difference was observed in the horizontal displacement of the olecranon (p > 0.05). Conclusion: The findings of this study indicated that individuals with restricted SIR ROM had significantly greater vertical displacement of the olecranon. The results suggest that the limitation of SIR ROM may lead to difficulty in rotation control of the humeral head.
        4,000원
        273.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Individuals with pes planus tend to overuse the extrinsic foot muscles, such as the tibialis anterior (TA) and peroneus longus (PL), to compensate for the weakened intrinsic foot muscles, such as the abductor hallucis (AbdH). Furthermore, differences in weight-bearing can affect the activity of muscles in both the intrinsic and extrinsic foot muscles. To date, no study has compared the effects of the short foot exercise (SFE) and toe spread-out exercise (TSO) on intrinsic and extrinsic foot muscle activity and the corresponding ratios in different weight-bearing positions. Objects: To compare the effects of the SFE and TSO on AbdH, TA, and PL activity and the AbdH/TA and AbdH/PL activity ratios in the sitting and standing positions in individuals with pes planus. Methods: Twenty participants with pes planus were recruited. Surface electromyography was used to assess the amplitudes of AbdH, TA, and PL activity. Participants performed both exercises while adopting both the sitting and standing positions. Results: No significant interaction between exercise and position was found regarding the activity of any muscle or ratio of the activity, except for PL activity. We observed a significant increase in AbdH activity during the TSO compared to the SFE, and no significant difference in TA and PL activity between the two exercises. AbdH, TA, and PL activity were significantly higher in the standing position than in the sitting position. Furthermore, the AbdH/PL activity ratio significantly increased in the sitting position, although there was a significant increase in AbdH activity in the standing position. Conclusion: In individuals with pes planus, we recommend performing the TSO in the sitting position, which may increase the activity of the AbdH while concurrently decreasing the activity of the TA and PL, thus strengthening the AbdH.
        4,000원
        274.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The serratus anterior (SA) is a muscle that performs protraction of the scapulothoracic joint and plays a role in stabilizing the scapula. Imbalances or weaknesses in SA activation are associated with a variety of shoulder dysfunctions, making selective SA strengthening important for rehabilitation. Objects: We aimed to compare the muscle activation of the pectoralis major (PM), SA, external oblique (EO), and internal oblique (IO) during the push-up plus (PUP) exercise with isometric hip adduction (HA) and abdominal drawing-in maneuver (ADIM). Methods: Nineteen healthy male participants performed three PUP exercises: standard PUP, PUP with ADIM, and PUP with HA. Surface electromyography was used to measure and analyze the muscle activity for PM, SA, EO, and IO. Results: PUP with HA showed the lowest PM activity and highest SA activity, and no significant difference was observed between PUP and PUP with ADIM. PUP with ADIM showed significantly the highest EO and IO activity, followed by PUP with HA and PUP. Additionally, PUP with HA showed the lowest PM/SA ratio, and no significant difference was noted between PUP and PUP with ADIM. Conclusion: PUP with HA was able to show high SA muscle activity while reducing PM muscle activity. In addition, PUP with HA can lead to higher EO and IO muscle activity than standard PUP. This exercise could be used as a practical exercise method to selectively strengthen SA and improve scapular muscle stability during early shoulder rehabilitation.
        4,000원
        275.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Single-leg squat (SLS)s are commonly used as assessment tool and closed kinetic exercises are useful for assessing performance of the lower extremities. Pronated feet are associated with foot pressure distribution (FPD) during daily activities. Objects: To compare the FPD during SLSs between groups with pronated and normal feet. Methods: This cross-sectional study included 30 participants (15 each in the pronated foot and control groups) are recruited in this study. The foot posture index was used to distinguish between the pronated foot and control groups. The Zebris FDM (Zebris Medical GmbH) stance analysis system was used to measure the FPD on the dominant side during a SLS, which was divided into three phases. A two-way mixed-model ANOVA was used to identify significant differences in FPD between and within the two groups. Results: In the hallux, the results of the two-way mixed-model ANOVAs revealed a significant difference between the group and across different phases (p < 0.05). The hallux, and central forefoot were significantly different between the group (p < 0.05). Moreover, significant differences across different phases were observed in the hallux, medial forefoot, central forefoot, lateral forefoot, and rearfoot (p < 0.05). The post hoc t-tests were conducted for the hallux and forefoot central regions. In participants with pronated foot, the mean pressure was significantly greater in hallux and significantly lower, in the central forefoot during the descent and holding phases. Conclusion: SLSs are widely used as screening tests and exercises. These findings suggest that individuals with pronated feet should be cautious to avoid excessive pressure on the hallux during the descent-to-hold phase of a SLS.
        4,000원
        276.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Landing from a step or stairs is a basic motor skill but high incidence of lateral ankle sprain has been reported during landing with inverted foot. Objects: This study aimed to investigate the effect of landing height and visual feedback on the kinematics of landing and supporting lower limbs before and after the touch down and the ground reaction force(GRF)s. Methods: Eighteen healthy females were voluntarily participated in landing from the lower (20 cm) and the higher (40 cm) steps with and without visual feedback. To minimize the time to plan the movement, the landing side was randomly announced as a starting signal. Effects of the step height, the visual feedback, or the interaction on the landing duration, the kinematic variables and the GRFs at each landing event point were analyzed. Results: With eyes blindfolded, the knee flexion and ankle dorsiflexion on landing side significantly decreased before and after the touch down. However, there was no significant effect of landing height on the anticipatory kinematics on the landing side. After the touch down, the landings from the higher step increased the knee flexion and ankle dorsiflexion on both landing and supporting sides. From the higher steps, the vertical GRF, anterior GRF, and lateral GRF increased. No interaction between step height and visual feedback was significant. Conclusion: Step height and visual feedback affected the landing limb kinematics independently. Visual feedback affected on the landing side while step height altered the supporting side prior to the touch down. After the touch down, the step height had greater influence on the lower limb kinematics and the GRFs than the visual feedback. Findings of this study can contribute to understanding of the injury mechanisms and preventing the lateral ankle sprain.
        4,200원
        277.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Lateral instability of the ankle is one of the most common causes of musculoskeletal ankle injuries. The peroneus longus (PL) and peroneus brevis (PB) contribute to ankle stability. In early rehabilitation, isometric exercises have been selected for improvement of ankle stability. To effectively train the peroneal muscles during eversion, it is important to consider ankle and body posture. Objects: This study aimed to compare activation of the PL, PB, and biceps femoris (BF) muscles during eversion in different ankle postures (neutral [N], plantarflexed [PF]) and body postures (sitting and side-lying). Methods: Thirty healthy individuals with no history of lateral ankle sprains within the last 6 months were included in the study. Maximal isometric strength of eversion and muscle activation were measured simultaneously. Muscle activation at submaximal eversion was divided by the highest value obtained from maximal isometric eversion among the four postures (percent maximal voluntary isometric contraction [%MVIC]). To examine the differences in muscle activation depending on posture, a 2 × 2 repeated measures analysis of variance (ANOVA) was conducted. Results: There were significant interaction effects of ankle and body postures on PL muscle activation and evertor strength (p < 0.05). The PL muscle activation showed a significantly greater difference in the side-lying and PF conditions than in the sitting and N conditions (p < 0.05). Evertor strength was greater in the N compared to the PF condition regardless of body posture (p < 0.05). In the case of PB and BF muscle activation, only the main effects of ankle and body posture were observed (p < 0.05). Conclusion: Among the four postures, the side-lying-PF posture produced the highest muscle activation. The side-lying-PF posture may be preferred for effective peroneal muscle exercises, even when considering the BF muscle.
        4,200원
        278.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Sleep accounts for approximately one-third of a person’s lifetime. It is a relaxing activity that relieves mental and physical fatigue. Pillows of different sizes, shapes, and materials have been designed to improve sleep quality by achieving an optimal sleep posture. Objects: This study aimed to determine which pillow provides the most comfortable and supports the head and neck during sleep, which may enhance sleep quality. Methods: Twenty-eight healthy adults (19 males and 9 females) with an average age of 29 years participated in this cross-sectional study. This experiment was conducted while the participants laid down for 5 minutes in four different pillow conditions: (1) no pillow (NP), (2) neck support foam pillow (NSFP), (3) standard microfiber filled pillow (SFP), and (4) hybrid foam pillow (HFP). The head-neck peak pressure, cranio-vertebral angle in supine (CVAs), cranio-horizontal angle in supine (CHAs), chin-sternum distance (CSD), and muscle tone of sternocleidomastoid were analyzed using one-way repeated measures analysis of variance (ANOVA). The significance level was set at p < 0.05. Results: The head-neck peak pressure was the highest in the NSFP condition, followed by the NP, SFP, and HFP conditions. The CVAs, CHAs, and CSD of the SFP were lower than those of the other pillows. Muscle tone was the highest in the NP condition, followed by the of NSFP, HFP, and SFP conditions. The participants subjective comfort level in both the supine and side-lying postures was highest in the HFP condition, followed by the SFP and NSFP conditions. Conclusion: This study can be used to establish the importance of pillow selection for highquality sleep. The results of this study, suggest that a hybrid pillow with a good supportive core and appropriate fluffiness can maintain comfort and correct cervical spine alignment during sleep.
        4,000원
        279.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Using wearable passive back-support exoskeletons in workplace has attracted attention as devices that support the posture of workers, enhance their physical capabilities, and reduce physical risk factors. Objects: This study aimed to investigate the effect of a wearable passive back-support exoskeleton on the activity of the erector spinae muscles during lifting tasks at various heights. Methods: Twenty healthy adult males were selected as subjects. Electromyography (EMG) was used to assess the activity of the erector spinae muscles while performing lifting tasks at three distinct heights (30, 40, and 50 cm), with and without the application of the Wearable Passive Back Support Exoskeleton. EMG data were gathered before and after the application of the orthosis. Results: The use of the Wearable Passive Back Support Exoskeleton resulted in a significant decrease in muscle activity when lifting a 10 kg object from heights of 30 and 40 cm (p < 0.05). Additionally, there was a significant reduction in muscle activity when lifting from a height of 50 cm compared with that at lower heights (p < 0.05). Conclusion: The use of a wearable passive back-support exoskeleton led to a decrease in the activity of the erector spinae muscles during lifting tasks, irrespective of the object's height. Our results suggest that the orthosis we tested may help decrease risk of lower back injuries during lifting.
        4,000원
        280.
        2024.04 KCI 등재 구독 인증기관·개인회원 무료
        정보제공의무란 계약 목적물에 대한 정보를 보유하고 있는 그 소유자가 계 약의 체결 여부에 영향을 미칠 수 있는 목적물에 대한 중요한 정보를 제공할 의무이다. 이러한 정보제공의무 위반의 경우, 계약이 원시적 불능 상태임에도 그러한 정보를 제공하지 않은 경우라면 민법 제535조가 적용되는 경우이므로 신뢰이익 손해를 배상하여야 한다. 그리고 상대방이 정보제공의무 위반을 이 유로 계약을 취소하는 경우 또는 정보제공의무 위반 사실은 있으나 그 계약을 유지하고자 하는 경우에도 그 손해에 대하여 535조를 유추적용하여 신뢰이익 손해배상을 청구하는 것이 합리적인 경우가 있다. 정보제공의무 위반에 따라 계약이 체결된 경우 계약의 목적물에 대한 중요 한 정보를 제공받았더라면, 일반적으로 계약을 체결하지 않거나 더 낮은 금액 을 반대급부로 하여 계약을 체결하였을 것이 예상될 수 있다. 이 경우 그 신뢰 이익 손해는 정보제공을 받지 못하여 계약을 이행하기 위하여 지출한 비용, 다른 수익 기회를 놓친 손해 그리고 하자 손해가 있다. 이러한 손해 중에서도 특히 정보제공을 받지 못하여 계약이 유지되고 있는 동안 동종의 다른 계약을 체결할 기회가 발생한 경우, 그에 따른 손해를 증명하여 배상받는 것이 계약 당사자 간에 손해를 가장 합리적이고 명확하게 배분하는 방법이 될 수 있다.