Fatigue life and penetration behavior were examined analytically by variety of initial front face crack length and initial crack depth. The fatigue crack shape before penetration is almost semielliptical, and the aspect ratio by calculation using the Newman-Raju's formula is smaller than the value obtained by the experiment. It is found that the crack growth behavior on the back surface after penetration is unique and can be divided into three stage a, b and c. By using the K value proposed by the authors, particular crack growth behavior and the change in crack shape can be evaluated quantitatively. It is found that fatigue life and penetration behavior were more dependent on initial front face crack length than initial crack depth.
This paper is an experimental study to investigate utility of ultrasonic treatment of fuel oil in diesel engine. Experiment was carrid out to clarify the effect of ultrsonic vibration on the characteristics of maximum pressure, fuel consumption ratio, smoke, BMEP and torque. The result obtained are as follows: 1. In the case of given ultrsonic vibration, the maximum pressure is increased in all experimental conditions. 2. In the case of given ultrsonic vibration, the decrease effect of fuel consumption rate is increased at low rpm. 3. The generation quantity of soots is increased according to load. In the case of given ultrsonic vibration, the decreased quantity of soots does not very according to load. 4. In the case of given ultrsonic vibration, the BMEP and torque are increased at low load.
The combustion characteristics, ignition delay, p-t, dp/dt, Q-t of diesel oil and fish oil blended diesel oils was investigated according to pressure and temperature in a constant volume combustion bomb. The results are as follows: 1) The influence of temperature and pressure on the ignition delay was almost constant in high temperature, regardless of the blending rates, and the ignition delay was shortest in the 60% blend. 2) The maximum pressure was high in order of with pure diesel oil, with the 20% blend and the 60% blend. 3) The rate of pressure rise was high in order of with pure diesel oil, with the 20% blend and the 60% blend. The rate of maximum pressure rise was significantly higher with pure diesel oil than with two blends. 4) The amount of accumulative heat release was large in order of with pure diesel oil, with the 20% blend and the 60% blend.
In this paper, the behaviour of cavitation erosion, influence of corrosion and corrosion control on slide bearing metals for internal combustion engine were investigated, and this experiment was done by the vibratory cavitation erosion tester. The main results obtained are as follows: 1. With decreasing the space between horn and specimen, the weight loss and its rate increased step by step. But the weight loss and its rate of 0.2mm space decreased conversely more than that of 0.4mm space at early stage. 2. The weight loss and its rate with change of pH were appeared to the order of pH2>pH12>pH7>pH4. And the weight loss and its rate at pH 4 decreased at best. 3. The weight loss and its rate by cavitation erosion for bearing metals were shown to the order of W.M7>W.M1>K.M4. 4. There appeared mainly small pit hole at pH2, and appeared the pit of netting thread type at pH12 by the results of the damaged surfaces at pH2 and pH12 environments that were sensitive to cavitation erosion. 5. With increasing the viscosity of lubricating oil, the weight loss rate by cavitation erosion became dull at the space below 0.5mm. 6. The protective efficiency of cavitation erosion-corrosion is superior inhibitor of chormate(25 ppm) to cathodic protection.
In order to understand and explain the spary combustion, it was necessary to understand the disintegration mechanisms of liquid jet. To understand the disintegration mechanisms of liquid jet, the disintegration phenomena and uniform droplet production regions of testing liquid jet was investigated by means of longitudinally vibration capillary nozzle, which was injected the testing liquids. The testing liquids were light oil and light oil and light oil blended with 25wt% fish oil (File fish oil, Sardine fish oil, Alaska pollac oil) The results can be summarized as follows: 1. The uniform droplet phenomena have been changed according to the frequency of capillary tube, the jet velocity and physical properties of testing oils. 2. Within the region of uniform droplet, Reynold number was increased as Weber number increases. 3. The lower limit of wave length in which uniform droplet was produced 0.8d which was lower than Rayleigh wave length 4. The light oil blended with file fish oil which has lower viscosity and surface tension had the widest uniform droplet production region on the frequency and velocity among testing oils. But light oil blended with sardine fish oil were similar with light oil in the uniform production region.
In this paper, the relationship between static pressure recovery and turbulent energy was presented in case of swirling flows into a conical diffuser. The distributions of turbulent energy in a diffuser sectional area were measured by a hot wire anemometer. The following conclusion can be drawn from the experiment. Diffuser loss is constituted by a dynamic pressure loss and total pressure loss. The static pressure recovery depends strongly on the total pressure loss. The static pressure recovery depends strongly on the total pressure loss, and the turbulent energy varies inversely as the static pressure recovery coefficient.
The purpose of this paper is to investigate the relationship between static pressure recovery and velocity distributions in case of swirling flow into a conical diffuser. In this research, velocity distribution is measured by a multi-hole yaw-meter. The following conclusions can be drawn from the experiments. (1) The static pressure recovery depends strongly on the strength of a swirl. (2) A high pressure recovery coefficient is achieved by inserting a solid core into the diffuser center.
This paper describes an application of artificial neural network to diagnose the defects of rotating machiner. Induction motor was used to the object of defect diagnosis. For defect diagnosis, the frequency spectrum of vibration was utilized. Learning method of applied neural network was back propagation. Neural network has following advantage; Once it has been learned, inference time is very short and it can provide a reasonable conclusion regardless of insufficient input data. So, this defect diagnosis system can be used superiorly to rule based expert system as quality inspection of rotating machinery in the shop.
This paper presents a method in order to calculate the vortex distribution, the streak-line and the time-line around the flat and the cambered otter board in two dimensional flow using the discrete vortex method, and to calculate C sub(L) and C sub(D) of the otter boards varied with the passage of time by the numerical simulation using the Blasu's formula. The results obtained are summarized as follows: 1. Flow pattern around the otter boards calculated by the discrete vortex method was resembled closely that of the visualized photograph. 2. C sub(L) and C sub(D) calculated by the numerical simulation was very similar to the model test. 3. The circulation direction around the otter boards and the action direction of the shearing force can be recognized from the time-line around the otter boards. 4. Flow speed in the back side of the otter boards was faster than that in the front side, and the difference of the flow speed in both side of the cambered otter boards was about 1.3 times greater than that of the flat otter boards. 5. The clockwise vortex was generated in the trailing edge, and the counter-clockwise vortex was generated the leading edge of the otter boards. And they were shown the shape of Karman's vortex varied with the passage of time.
A studies on the pattern of sea water circulation was carried out by using drogue experiments, tidal current measurement and hydrographic data in Kamak Bay which has two channels. At the flood, the water inflowed from the northern narrow channel flows mostly to the southward then the westward because Daekyung-island located at the flow path, at the same time the water from the southern channel of bay directed strongly to the north with a spine centered at around Gunnaeri. And these waters converged at the area between eng-Island and Deakyung-Island in the bigining of the flow, and placed at less southern part than the area at the late. The water of the north west inner bay having concave bottom topography inflows to Najin inlet with a spin of anti-clockwise. At the ebb, those waters in the bay turn back to two channels respectively, but most of waters directed to the southern channel of the bay. The directions of residual current of two channels are the southward mainly, and the current of inner area are influenced by the prevailing wind. The north-west inner bay which has the weak tidal current less than 10 cm/sec shows a similar upwelling by off-shore wind in winter, and the stratification in summer, respectively.
필자는 어업 개발도상국에 대한 정부의 대외기술공여 사업의 일환으로 1991년 12월 16일 부터1992년1월15일까지 중동아시아의UAE농수산부로로서, 해양자원 연구센타의 안내를 받아 자국의 주요어항을 순회하면서 어업실태를 파앙ㄱ하고 어민과 공무원을 대상으로 현장지도 교육을 실시하는 한편 연구센타의 연구원들과 토론을 통하여 이 나라의 어업이 나아가야할 방향에 대하여 집중적으로 논의 하였다. 본서는 그간에 수집한 여러자료와 함께UEA어업의 개선방향에 대한 지문내용을 간추린 것이다.
The hydrodynamic interaction characteristics between multiple floating bodies of semisubmersible type are examined for presenting the basic data for the design of huge offshore structures supported by a large number of the floating bodies in waves. The numerical approach is based on combination of a three-dimensional source distribution method and interaction theory which is exact within the context of linear potential theory. The method is applicable to an arbitrary number of three-dimensional bodies having any individual body geometries and geometrical arrangement with the restriction that the circumscribed, bottom-mounted, imaginary vertical cylinder for each body does not contain any part of the other body. The validity of this procedure was verified by comparing with numerical results obtained in the literature.
This is analyzed using the finite element method which is appling excellent isoparametric curve element in the aspect of large usages of dynamic responses in which is regarding geometric and material nonlinear of a large scale shell structure of an airplane, a submarine, a ship, and an ocean structure. The solution of dynamic equations is got by direct integration method using time-stepping procedure and regarding Central Difference Method of the both solutions. But because formal matrix factorization is not necessary in each time step and it does not take less time to compute relatively, this method must be regarded very few time steps on the condition. Axisymmatric shell problems are inspected using 8 node Isoparametric element in this paper. Partial axisymmatric spherical shell is used as a model to analyze axisymmatric nonlinear dynamic behavior regarding. Total Lagrangian formulation in geometric nonlinear behavior and elastio-viscoplastic in material nonlinear behavior.
Zr-4 used for a cladding and an end plug of reactor component has creep deformation under operation at high temperature. Creep is regarded as the time dependent deformation of a material under constant applied stress. Although the major source of the deformation of zirconium component in water-cooled reactors is irradiation creep, the thermal creep may give a rise to significant deformation in reactor component especially at relatively high temperatures and at various constant stresses, and therefore it must be predicted accurately. Stress relaxation is the time dependent change of stress at constant strain and it is a process related intimately to creep. In this paper, the creep behavior and stress relaxation of Zr-4 is examined at the temperature of 500℃ that is 40% of the absolute melting temperature of Zr-4 under the stress below yield stress and under the various constant strains. The results obtained are summarized as follows: 1) With an increase of stress, the steady state creep rate increases and the creep rupture time decreases. 2) The steady state creep rate ε(%/s) for the stress Σsub(c) (kgf/mm super(2)) of Zr-4 increases outstandingly. All the empirical equations computed for Zr-4 increases outstandingly. All the empirical equations computed for Zr-4 are in accord with Norton's model equation(ε=KΣ sub(c) super (n)). The constants of materials computed are as follows: K=3.9881×10 super(-5), n=1.9608 3) The rupture time T sub(r) (hr) decreases linearly with the increase of stress on the log-log scaled graph. The empirical equations computed for Zr-4 are in accord with Bailey's model equation (T sub(r)=K sub(1)Σsub(c) super(m)). The constants of materials computed are as follows: K sub(1)=1.2875×10 super(16), m=-3.467 4) It seems clear that the strain could be quantitatively dependent on the high temperature creep properties such as creep stress, rupture time, steady state creep rate and total creep rate. It is found that these relationships are linear on the log-log graph. 5) In stress relaxation test, as the critical constant strain that can be allowed to the specimen is larger, stress relaxation becomes more rapid, and as the constant strain is smaller, the stress relaxation becomes slower.
In this study, corrosion fatigue test of SAPH45 steel was performed by the use of plane bending fatigue tester in marine environment and investigated fracture surface growth behavior of base metal and heat affected zone corrosion fatigue. The main results obtained are as follows: 1) Fracture surface growth of heat affected zone (HAZ) is delayed more than that of base matel (BM), and they tend to faster in seawater than in air. 2) Corrosion sensitivity to corrosion fatigue life of HAZ is more susceptible than that of BM. 3)In the case of the corner crack by corrosion fatigue, the correlation between the propagation rate of fracture surface area(dA/dN) and stress intensity factor range(ΔK) for SAPH45 are applied to Paris rule as follows: dA/dN=C(ΔK) super(m) where m is the slope of the correlation, and is about 6.60-6.95 in air and about 6.33-6.41 in seawater respectively.
In this study, cathodic protection experiment was carried out by Al-alloy sacrificial anode in marine environments which have specific resistance(σ) if 25~7000Ω.cm and investigated protection potential, current density and loss rate of Al-alloy sacrificial anode. The main results resistance(σ) of 400Ω.cm, the cathodic protection potential appears high about-720 mV(SCE). But below specific resistance(σ) of 300Ω.cm, the cathodic protection potential appears low about-770 mV(SCE) and simultaneously, cathode is protected sufficiently. 2) The loss rate of Al-Alloy sacrificial anode became large with decreasing specific resistance and increasing the ratio(A sub(c)/A sub(a) of bared surface area of anode and cathode. 3) The loss rate of Al-alloy sacrificial anode(w) to the mean current density of anode(i) is as follows. w=ai+b (a, b : experimental constants)
In this paper, combustion characteristics and engine performance varying with blending rate of fish oil using five test fuels, e.g.pure diesel oil and four types of sardine-oil-blended diesel oils, their blending rates by weight being 20%, 40%, 60% and 80% respectively, and operating condition of engine, were investigated experimentally both in the constant volume combustion bomb and in the engine. The results are summarized as follows: 1) In the bomb, the influence of temperature on ignition delay of sardine-oil-blended diesel oils was larger than that of pure diesel oil, and it tended to increase as the blending rate of fish oil increase sardine-oil-blended diesel oils. As far as the influence of pressure on ignition delay concerns, there was no significant difference with all the test fuels. 2) In the engine, the ignition delay of fish-oil- blended diesel oils was longer than that of pure diesel oil, and it tended to increase as the blending rate increases. In the bomb, the ignition delay in high temperature showed no significant difference between with pure diesel oil and with fish-oil-blended diesel oils, and it was especially short with 60% fish-oil-blended diesel oil. In low temperature, however, the delay became longer as the blending rate increase. 3) The combustion duration was shorter with fish-oil-blended diesel oils than with pure diesel oil and it became a little shorter as the blending rate increases. 4) The rate of fuel consumption showed no significant difference between with fish-oil-blended diesel oils and with prue diesel oil, although calorific value of fish oil was lower than that of diesel oil. 5) Smoke density in exhaust gas was lower with fish-oil-blended diesel oils than with pure diesel oil and the higher the blending rate was, the lower the smoke density became
Analog PID controllers have been designed to make good use of position control in industries. Recently, the importance of digital position control is emphasized for the requirements of controller which are not only to control the objects but to include various aspects such as easiness of design and implementation, simple exchange of control program and convenient communications of data between various controllers and a host computer. This study proposes a combined control method which is mixed the vaiable structure control (VSC) with the PI control for minimum time position control of DC servo motor by microcomputer. The results of test by this method show offset-free and minimum time optimal position control which is not affected by the disturbance and the system parameter variations. The validity of the proposed method comparing with the conventional PID control is proved by the response experiments.
The paper presents a digital speed control approach of induction motor systems by using a digital redesign method and adopting a well known 2nd order model as the system model equation. The basic concept using the modeling equation is induced from the control theory stand point such that we can describe usually the motor system connected by inverter, generator and load etc. just as a mechanical system to be controlled. The concept does not demand us the complicated vector-based modeling equation adopted in the traditional methods for the speed control of induction motor. The effectiveness of the servo control system composed by the above mentioned design concept is illustrated by the experimental results in the presence of step reference change and generator load variation. It is observed from the experimental results that the steady state error of the experimental set up becomes zero after some regulation time and the induction motor system is robust in spite of reference signal change and load variation of generator.
Generally a navigator evaluated the maneuverability of his ship by the scale of turning circle which was described only by the largest rudder angle of the port and starboard sides. But to have the sufficient knowledge of his ship's maneuvering characteristics he should consider the data about the new course keeping test, the spiral test, and the turning circle tests in accordance with the rudder angles together. In this paper the author performed the above tests to study the maneuverability of the stern trawler M.S. Pusan 404 which is a training ship of the National Fisheries University of Pusan. The obtained results are summarized as follows: 1. When the rudder angles being 5。, 10。, 20。, 30。, 35。 the advances of the starboard side turning circles were 12.8, 8.2, 4.8, 2.9, 2.7 times as large as the length of the ship, and of the port side turning circles were 13.3, 8.7, 5.4, 3.5, 2.9, time as large as the large as it. Under the same conditions the tactical diameters were 15.1, 9.7, 5.2, 3.1, 2.8 times as large as the length of the ship, for starboard side, and 17.2, 12.4, 6.4, 3.7, 3.2 times as large as it for port side. 2. As the rudder angle being increased the ratio of the advance to the tactical diameter was nearly 1 and her obeying ability was better than that of the small angle. 3. The mean values of the rates of speed reduction during the steady turning motion were 0.96, 0.92, 0.82, 0.71, 0.65 in accordance with the rudder angles. 4. The relative formulas between the distance to the new course y and the altering course x were as follows: When rudder angles being 10。, 20。, 30。, y=52.2222+1.6133x, y=48.750+0.9383x, y=39.250+0.655x respectively. 5. There was little difference of the distance to the new course between rudder angle 20。and 30。, and so it is desirable for a navigator to a navigator to use the small rudder angles unless sudden emergencies. 6. Though her rudder angle being small her course stability was good according to the spiral tests.