ETc 손실을 보상하는데 필요한 물의 양을 작물 용수 요구량(Crop water requirement, CWR)로 정의되며, ETc 평가는 작물 필요 요구량을 정확하게 정량화하는 데 필요하며, 물 균형 계산에서 중요한 역할을 한다. 토마토와 파프 리카의 실제 관수 요구량(Actual crop water, ACW)이 적절한 CWR인지 평가하였다. 토마토와 파프리카 재배에 적정한 AWC 예측 및 추정을 위하여 온실 내부 환경데이터를 Penman-Monteith을 이용하여 기준 작물 증발산(ET)을 계산한 후, 기준 증발산은 작물 상수(Kc;토마토-1.15, 파프리카-1.05)계수로 조정하였다. 토마토와 파프리카의 CWR과 ACW를 계산하여 비교 평가한 결과 ACW가 CWR을 대체할 수 있지만 파프리카의 ACW는 필요 이상으로 높게 나타났다. 또한, 토마토의 ACW는 1일 100 ~ 1,200 ml이고, 파프리카의 ACW는 1일 100 ~ 500 ml가 적절한 것으로 나타났다. 그러나, 스마트 온실에서 ETc의 정밀도를 높이려면, ETc가 CWR로 변환되고 ACW와 비교하기 위해서 클래스 A팬 설정이 필요하다. 향후 실시간으로 CWR을 측정하기 위한 시뮬레이션 프로그램 연구가 필요하다.
We report the performance of the 13.7-meter Taeduk Radio Astronomy Observatory (TRAO) radio telescope. The telescope has been equipped with a new receiver, SEQUOIA-TRAO, a new backend system, FFT2G, and a new VxWorks operating system. The receiver system features a 16-pixel focal plane array using high-performance MMIC preamplifiers; it shows very low system noise levels, with system noise temperatures from 150 K to 450 K at frequencies from 86 to 115 GHz. With the new backend system, we can simultaneously obtain 32 spectra, each with a velocity coverage of 163 km s−1 and a resolution of 0.04 km s−1 at 115 GHz. The new operating system, VxWorks, has successfully handled the LMTMC-TRAO observing software. The main observing method is the on-the-fly (OTF) mapping mode; a position-switching mode is available for small-area observations. Remote observing is provided. The antenna surface has been newly adjusted using digital photogrammetry, achieving a rms surface accuracy better than 130 µm. The pointing uncertainty is found to be less than 5'' over the entire sky. We tested the new receiver system with multi-frequency observations in OTF mode. The aperture efficiencies are 43±1%, 42±1%, 37±1%, and 33±1%, the beam efficiencies are 45±2%, 48±2%, 46±2%, and 41±2% at 86, 98, 110, and 115 GHz, respectively.
Electrical stimulation (ES) is known to guide the development and regeneration of many tissues. Use of low-frequency ES for therapeutic purposes has been increasing during the last decades. Mesenchymal stem cells (MSCs) represent an appealing alternative cell source for cartilage repair. There are studies that induce differentiation into cartilage cells by treating the growth factors in stem cells or altering the properties of stem cells by genetic modification. In this study, we exposed equine adipose tissue-derived MSCs (eAD-MSCs) to ES and assessed changes in the chondrogenic differentiation potential. The cells obtained from equine adipose tissue attached to culture plates and expanded in vitro. Flow cytometric analysis at third passage indicated that the cells were strongly positive for CD44, CD90, and CD105, but negative for CD13, CD34, and CD45. Next, ES was applied to eAD-MSCs cultured under condition of high-density micromass under ES of 10 V/cm, with duration of 10 ms and a frequency of 2.0 Hz for three days. Gene expression of chondrogenic markers such as collagen type II, Aggrecan, and Sox9 was analyzed at three days of ES. As a result, we observed the differentiation potential of eAD-MSCs into chondrocytes by specific ES in absence of exogenous growth factors. We also found that ES upregulated the expression of heat shock protein 70, which affects cartilage formation. This study may contribute to the differentiation of MSCs into chondrogenic lineage under specific ES condition.
Mesenchymal stem cells (MSCs) are capable of differentiating into mesenchymal tissue such as bone, cartilage, muscle, and adipose, and have been isolated and characterized from various species. Deer adipose tissue-derived MSCs (dAD-MSCs) have not been studied and deer bone marrow-derived MSCs (dBM-MSCs) have not been fully characterized. In this study, we firstly isolated MSCs from deer tissues and then compared characteristics of dAD-MSCs and dBM-MSCs. dAD-MSCs and dBM-MSCs exhibited significant increase in proliferation under low-glucose DMEM culture condition during 20 and 10 passages consecutive passages, respectively. Both cells expressed cell surface markers such as CD73, CD90, and CD105, but did not express CD34 and CD45. Two types of cells expressed stemness markers (Oct4, Sox2, and Nanog) and exhibited differentiation potential into mesodermal lineages. Both cells exhibited osteogenic and chondrogenic differentiation potential, but poor adipogenic differentiation potential. Specifically, dAD-MSCs have a greater capacity for chondrogenic differentiation potential compared to dBM-MSCs. Collectively, we successfully isolated dAD-MSCs from deer for the first time. This study suggests that adipose tissue of deer could be used as a source of deer MSCs.
Mesenchymal stem cells (MSCs) are multipotent cells capable of replicating as undifferentiated cells, and have the potential of differentiating into mesodermal lineages. Goats are commonly used as animal models for bone tissue engineering to test the potential of stem cells for bone regeneration. Goat MSCs isolated from bone marrow (BM) or adipose tissue (AD) should be evaluated using in vitro assays, prior to their application in a tissue engineering project. In this study, we compared the stem cell properties of MSCs derived from goat AD, BM and ear skin tissue (ESK). As results, BM and ESK-MSCs exhibited a spindle-shaped morphology comparable to that of AD-MSCs. Especially, BM-MSCs could be cultured for significantly longer periods and exhibited the greatest expansion capacity, whereas AD-MSCs had the shortest culture time and lowest growth rate. Also, we compared differentiation potentials of AD, BM and ESK-MSCs into adipogenic, chondrogenic, and osteogenic lineages through specific staining and quantitative real-time RT-PCR. Collectively, we successfully isolated ESK-MSCs from goat for the first time. This study suggests that adult skin tissue of goat could be used as a source of goat MSCs. Further studies are needed to show the more information for establishment and fully characterization of goat ESK-MSCs.
This study was to investigate the sorbic acid, benzoic acid and sulfur dioxide in commonly consumed beverages, snacks and instant ramens in Korea. A total of 150 food samples including 50 beverages, 50 snacks and 50 instant ramens were examined using the Korea Food Code method. Sorbic and benzoic acid were analyzed by the HPLC method, whereas sulfur dioxide was measured by Monnier-Williams method. Our results indicated that benzoic acid was detected in six beverages samples, and its concentration was in the range of 3.08-11.94 mg/kg. The contents of both sorbic and benzoic acid in 50 beverage samples did not exceed the residue allowance standards set by the Ministry of Food and Drug Safety (MFDS). Sulfur dioxide was detected in 12 beverages samples, but its content was lower than the detection limit specified in the method by the Korea Food Code. On the other hand, sorbic acid was not detected all samples. These results provide a basic data regarding sorbic acid, benzoic acid and sulfur dioxide in commonly consumed beverages, snacks and instant ramens in Korea.