검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 38

        21.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        When performing finite element analysis using materials with porosity the porosity shows different mechanical properties from the existing mechanical properties of the existing base materials. In this study the equivalent properties were calculated and verified by applying the representative volume element (RVE) method and assuming that the material with porosity is a 2D orthotropic material. In case of finite element analysis using porous material or composite material, it is inefficient to perform the analysis through material modeling. Based on the element volume and element stress values ​​derived using the finite element analysis program, the representative stress values ​​and elastic modulus matrix were calculated using Python. In addition, equivalent properties were derived using the calculated elastic modulus matrix. The pores were simulated by etching a thin plate specimen made of STS304 material in a certain pattern, and the elastic modulus and Poisson's ratio were measured through a UTM and compared with simulation results. It was confirmed that an error of 7.028% for elastic modulus and 10% for Poisson's ratio occurred, and through this, the validity of this simulation was verified.
        4,000원
        22.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The demand for materials with porosity is steadily increasing and the need for porous materials is increasing in fields such as chemical engineering and energy storage. In order to minimize trial and error, verifying design validity through finite element method at the design stage has the advantage to verify design validity with low cost. However there are limitations in finite element analysis using porous materials. In this study calculating the equivalent mechanical properties reflecting the porosity was carried out, and the first step was the isotropic elasticity in plane stress condition. The equivalent elastic modulus and the equivalent Poisson's ratio were derived through simulation. Assuming that the voids exist in a two-dimensional symmetrical shape and a constant distribution, the unit cell was defined and the equivalent mechanical properties were calculated. The specimen with same condition were measured through a universal test machine (UTM), the elastic modulus and Poisson's ratio were measured. The similarity between the value obtained through the simulation and the value measured through the experiment was under 5%, so the validity of this simulation was verified. With this result, FEM with porous materials will be used for design.
        4,000원
        23.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a welding heat source model was presented and verified during fiber laser welding. The multi-layered heat source model is a model that can cover most of existing studies and can be defined with a simple formula. It consists of a total of 12 parameters, and an optimization algorithm was used to find them. As optimization algorithms, adaptive simulated annealing, multi island genetic algorithm, and Hooke-Jeeves technique were applied for comparative analysis. The parameters were found by comparing the temperature distribution when the STS304L was bead on plate welding and the temperature distribution derived through finite element analysis, and all three models were able to derive a model with similar trends. However, there was a deviation between parameters, which was attributed to the many variables. It is expected that a more clear welding heat source model can be derived in subsequent studies by giving a guide to the relational expression and range between variables and increasing the temperature measurement point, which is the target value.
        4,000원
        24.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Welding is the most widely used technology for manufacturing in the automobile, and shipbuilding industries. Fiber laser welding is rapidly introduced into the field to minimize welding distortion and fast welding speed. Although it is advantageous to use finite element analysis to predict welding distortion and find optimized welding conditions, there are various heat source model for fiber laser welding. In this study, a welding heat source was proposed using a multi-layered heat source model that encompasses most of the existing various welding heat source models: conical shape, curved model, exponential model, conical-cylindrical model, and conical-conical model. A case study was performed through finite element analysis using the radius of each layer and the ratio of heat energy of the layer as variables, and the variables were found by comparing them with the actual experimental results. For case study, by applying Adaptive simulated annealing, one of the global optimization algorithms, we were able to find the heat source model more efficiently.
        4,000원
        25.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As the International Maritime Organization (IMO)'s environmental regulations on ship emissions become strict, the demand for ships powered by Liquefied Natural Gas (LNG) is rapidly increasing worldwide. Compared to other materials, high manganese steel has the advantages of superior impact toughness at cryogenic temperatures, a small coefficient of thermal expansion, and low cost of base materials and welding rods. However, there is a limitation in that the mechanical properties of the filler material are lower than the base material having excellent mechanical properties. In this study, after performing a high manganese steel laser butt welding experiment, the welding performance was evaluated through mechanical property (yield strength, tensile strength, hardness, cryogenic impact strength) tests of the weld. As a result, it was observed that the yield strength and tensile strength of the high manganese steel laser welding part was 97.5% and 93.5% of the base metal respectively. Also the hardness of welding part was 84.2% of the base metal. The cryogenic impact strength of the welding part and the base metal were over the 27J, the level of welding part is 76.1% of the base metal.
        4,000원
        26.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        LNG makes cryogenic conditions, so metals without low-temperature brittleness must be used. The International Maritime Organization (IMO) defines 9% Nickel steel, STS304L, 36% Nickel steel and Al5083 as metals that can be used in cryogenic conditions through the IGC Code. In this study, Al5083-O was studied to minimize welding distortion, and verified through finite element analysis and experiments. The block dumping method, which is advantageous in terms of analysis time and cost, was used, not the continuous heat source method. The constraint models with the thickness direction and the tensile force model were compared with the reference model, it was confirmed that the tensile force model had no significant effect. After verifying through the experiment, it was confirmed that the trend of the finite element analysis model was consistent with the experiment. Through this study, a welding distortion minimization model could be found with the block dumping method. It is judged that simulation of many models through short time analysis will be of great help in the field.
        4,000원
        27.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A basic metal deposition experiment for manufacturing aluminum parts was performed using WAAM (Wire arc additive manufacturing), and the cross-sectional shape of the laminate according to nine deposition conditions. The effect of heat input was analyzed for the bead shape according to the deposition conditions, and the deposition efficiency was calculated by analyzing the cross-sectional shape of thin-wall parts made of aluminum. The amount of heat input was used in the experiment from about 2.7 kJ/cm to 4.5 kJ/cm, and the closer the heat input was to 4.5kJ/cm, the higher the deposition efficiency was. The maximum lamination efficiency obtained through this study reached 76%.
        4,000원
        28.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Natural gas is the most realistic fuel among eco-friendly fuels. Natural gas production is limited, and in Korea, it is supplied and utilized in the form of liquefied natural gas (LNG). In the case of LNG, the vaporization point is 163 degrees below zero, so ordinary metal cannot be used due to its brittleness. The International Maritime Organization (IMO) defines metals that can be used in the IGC Code, and is used for storage containers, transportation containers, etc. based on the metals. Welding is essential in the manufacture of large structures such as LNG storage tanks. In this study, weldability studies related to cryogenic materials were conducted. In Part I of this study, high-manganese steel and part II were studied for two types of stainless steel (STS304L, STS316L), and in Part III, aluminum (AL5083). During laser welding, the shape of the Bead on Plate (BOP) was analyzed, and a total of nine cases were analyzed using laser power and welding speed as variables. It was confirmed that the penetration and the width of the welding width were linearly proportional to the amount of heat input. Based on this study, it is possible to conduct a follow-up study to find the optimal welding conditions for butt welding and fillet welding.
        4,000원
        29.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The estimation of heat source model is very important for heat transfer analysis with finite element method. Part I of this study used adaptive simulated annealing which is one of the global optimization algorithm for anticipating the parameters of the Goldak model. Although the analysis with 3D model which depicted the real situation produced the correct answer, that took too much time with moving heat source model based on Fortran and Abaqus. This research suggests the procedure which can reduce time with maintaining quality of analysis. The lead time with 2D model is reduced by 90% comparing that of 3D model, the temperature distribution is similar to each other. That is based on the saturation of heat transfer among the direction of heat source movement. Adaptive simulated annealing with 2D model can be used to estimate more proper heat source model and which could enhance to reduce the resources and time for experiments.
        4,000원
        36.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Anticipation of welding deformation with finite element method is a very interested topic in the industries, adequate heat source model is essential for concluding reasonable results. This study is related to estimate the parameters of Goldak heat source model, and global optimization algorithm is applied to this research. The heat affected zone (HAZ) boundary line of bead on plate (BOP) welding is used as the target, parameters of heat sources are used as the variables. Adaptive simulated annealing is applied and the optimal result is obtained out of 1,000 candidates. The convergence of finite element method and the global optimization is meaningful for estimation of welding deformation, which could enhance to reduce the resources and time for experiments.
        4,000원
        37.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The verification and the design improvement of weight-training machines were performed. This research was carried out with computer simulation using the musculoskeletal model of the human body. The main topic of this research is the improvement of an arm-curl machine. Also the improved exercise effects were observed in this paper. The existing exercise which moves the scapula on the axis of the elbow with raised forearm is effective for only Biceps. We suggested the new concept arm-curl machine that also raises the scapula after raising the forearm to be effective for Triceps and adjacent muscles. The exercise effect to the Biceps and Triceps was verified in the partⅠ, that to the non-adjacent muscle such as Lattismus Dorsi was verified in the partⅡ of this study. The analysis with computer simulation using the musculoskeletal model could be helpful to develop improved healthcare machines with reduced price and time.
        4,000원
        38.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Contemporary people want to develop their bodies to enhance quality of life. Although weight-training machines have been mainly developed with this trend based on intuition and experience, this study attempted to improve and verify those products through computer simulations using the musculoskeletal model of the human body. An arm-curl machine, a weight-training machine for arm exercise, was chosen for this research and the improved exercise effects were observed. The existing exercise that moves the scapula on the axis of the elbow with raised forearm is effective for biceps but not for triceps and adjacent muscles. Thus we suggested the idea for a new concept arm-curl machine that also raises the scapula after raising the forearm. To verify the effects of this new exercise, we manufactured arm-curl linkage. The experiments found that the exercise effects of the biceps were maintained, and the exercise effects of the triceps remarkably improved. These findings verified the effects of the proposed new concept arm-curl linkage.
        4,000원
        1 2