검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6,928

        381.
        2023.05 구독 인증기관·개인회원 무료
        Working during decommissioning of nuclear facilities can subject workers to a number of industrial health and safety risks. Such facilities can contain hazardous processes and materials such as hot steam, harsh chemicals, electricity, pressurized fluids and mechanical hazards. Workers can be exposed to these and other hazards during normal duties (including slips, trips and falls, driving accidents and drowning). Industrial safety accidents, along with their direct impacts on the individuals involved, can negatively affect the image of nuclear facilities and their general acceptance by the public. Industrial safety is the condition of being protected from physical danger as a result of workplace conditions. Industrial safety program in a nuclear context are the policies and protections put in place to ensure nuclear facility workers are protected from hazards that could cause injury or illness. Preventive actions are those that detect, preclude or mitigate the degradation of a situation. They can be conducted regularly or periodically, one time in a planned manner, or in a predictive manner based on an observed condition. Corrective actions are those that restore a failed or degraded condition to its desired state based on observation of the failure or degradation. In industrial safety, the situations or conditions of interest are those observed via the performance monitoring, investigations, audits and management reviews. Preventive and corrective actions are those designed to place or return the system to its desired state. Preventive actions where possible are preferred as they eliminate the adverse condition prior to it occurring. When an accident or incident occurs, the primary focus is on obtaining appropriate treatment for injured people and securing the scene to prevent additional hazards or injuries. Once the injured personnel have been cared for and the scene has been secured, it is necessary to initiate a formal investigation to determine the extent of the damage, causal factors and corrective actions to be implemented. Certain tools may be needed to investigate such incidents and accidents. Initial identification of evidence immediately following the incident includes a list of people, equipment and materials involved and a recording of environmental factors such as weather, illumination, temperature, noise, ventilation and physical factors such as fatigue and age of the workers. The five Ws (what, who, when, where and why) are useful to remember in investigation of incidents and accidents.
        382.
        2023.05 구독 인증기관·개인회원 무료
        Despite of careful planning of decommissioning projects, there are often surprises when facilities are opened for dismantling purposes, or when material is removed from hot cells, etc. Unexpected incidents and findings during the decommissioning of nuclear facilities have been referred to in the past as unknowns. However, many of the problems encountered during implementation of decommissioning are well known, it is simply that they were not expected to arise. In some other cases, the problem may not have been encountered in the decommissioning team’s experience, forcing the development of new techniques, tools and procedures to address the unexpected problem, with the attendant delays and cost overruns that this often involves. Unknowns in decommissioning cannot be eliminated, regardless of the efforts applied. This is especially the case in old facilities where documentation may have been lost or where modifications were carried out without updates to reports. As a result, when planning for decommissioning, it is prudent to assume that such problems will occur, and ensure that arrangements are in place to deal with them when they arise. This approach will not only improve the efficiency of the decommissioning project, but will also improve the safety of the operations. One of the most common root causes of unexpected events in decommissioning is the lack of detailed design information or missing records of modifications, maintenance issues and incidents during operation. It is therefore necessary to check the completeness of design information in existing plants and to ensure that configuration management techniques are applied at all stages of the lifetime of a plant. In the case of a new plant, archiving samples of materials can be a valuable source of information to support decommissioning planning. During the lifetime of plants, it is likely that modifications will be carried out involving the construction of new buildings. The opportunity should be taken in these circumstances to consider the layout, the physical size and other attributes of the plant to ensure that they do not make decommissioning of existing facilities more difficult and also to optimize the potential for reuse in support of the decommissioning of the whole site, later in the life of the facility. Characterization of all aspects of a plant is essential to reduce the number of unknowns and the likelihood of unexpected events. This characterization should be extensive, but there is a limit to the level of detail that should be sought as the cost versus benefit gain may reduce. Reducing unknowns by retrospectively obtaining physical data associated with a facility is a useful means of characterization, and there are many tools in existence that can be used to carry this out accurately and effectively. Regardless of the efforts that are employed in decommissioning planning, unexpected events should be anticipated and contingency plans prepared. Although the details of the event itself may not be anticipated, its impact may affect safety and environmental discharge, and may or may not involve radiological impacts. Regardless of more serious impacts, unexpected events are likely to result in modifications to the decommissioning plan, incur delays and cost money. Finally, regardless of the status of a facility, whether at the concept stage or at the decommissioning stage of its life cycle, it is never too early to begin thinking and planning for decommissioning.
        383.
        2023.05 구독 인증기관·개인회원 무료
        Laser cutting technology capable of remote cutting is being developed to reduce radiation exposure to workers and minimize secondary waste generation when dismantling highly polluted nuclear power plant facilities (reactors, pressurizers, steam generators, coolant pumps, etc.). Laser cutting proceeds in air or water, and at this time, secondary products containing radioactive materials are inevitably generated. In air cutting, dust and aerosol are generated, and in underwater cutting, aerosol, water vapor, dispersed particles (colloid, suspension), sediment (dross, sediment), and radioactive waste liquid are generated. Dispersed particles float in the form of fine particles in water, increasing the turbidity of water as cutting progresses, hindering work, and aerosols contain micrometer-sized particles together with water vapor, which can threaten the safety of workers. Particles dispersed in water and aerosol are within 10% of the mass ratio among secondary products, but the volume they occupy is very large, which can have a significant impact on the environment as well as a burden on treatment capacity. Various characterization methods are being developed to diagnose the generation mechanism and physical and chemical properties of laser cutting secondary products in real time and to secure technologies for collecting and removing dispersed particles and aerosols in water. This study introduces a real-time laser cutting secondary product characteristic evaluation method that can identify the key mechanisms of secondary product generation by analyzing the plasma formation process on laser cutting surface and behavior of aerosol, underwater dispersed particles produced by secondary products, as well as physical and chemical properties in real time with various measurement technologies such as Optical Emission Spectrometer (OES), Particle Size Analyzer (PSA), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), Transmission electron microscopy (TEM) and Inductively Coupled Plasma Time-of-Flight Mass Spectrometry (ICP-TOF-MS).
        384.
        2023.05 구독 인증기관·개인회원 무료
        Decommissioning of Nuclear Power Plant (NPP) projects in South Korea starts with permanent shutdown of Kori unit 1 and Wolsung unit 1. It is important to establish a treatment and disposal method for radioactive waste generated during the decommissioning of the nuclear power plants. Large quantities of the wastes during decommissioning of NPP are generated in a short period of time and the wastes have various types and characteristics. For efficient decommissioning of NPP process, the radioactive waste is classified by types and each treatment method and packaging concept is presented respectively in this paper. Radioactive waste generated during decommissioning of NPP is classified into reactor vessel, reactor internals, metals, Dry Active Waste (DAW), concreate, spent fuel storage rack, spent resin and spent filter, etc., and the packaging concept for each type should be established to meet the waste acceptance criteria. Major waste acceptance criteria requirements include nuclides concentration, filling rate, free water, surface radiation does rate and weight. Radioactive waste containers can be classified into packaging containers, transport containers, and disposal containers. The packaging container is used to contain, transport, and store radioactive waste within the radiation control area, and a control number has been assigned as a radioactive waste drum after the final treatment has been completed. The transport container is used for transporting radioactive waste filled-containers from a radiation control area through an uncontrolled area. In this paper, the concept of disposal of dismantled radioactive waste and packaging methods were reviewed in comprehensive consideration of domestic radioactive waste transport and storage regulations, permanent disposal environment, and development status of large containers.
        385.
        2023.05 구독 인증기관·개인회원 무료
        The treatment of waste generated during operation as a part of preparation for decommissioning is coming to the fore as a pending issue. Non-fuel waste stored in the spent fuel pool (SFP) of PWRs in Korea includes Dummy fuel, damaged fuel rod storage container, reactor vessel specimen cask, spent in-core instrumentation, spent control element assemblies, spent neutron source assemblies, burnable poison rods, etc. In order to treat such waste, it is necessary to classify radioactive waste level and analyze kinds of nuclide in accordance with legal requirements. In order to solve the problem, the items that KHNP-CRI is trying to conduct like followings. First, KHNP-CRI will identify the current status of non-fuel waste stored in the SFP of all domestic nuclear power plants. In order to consider the treatment of non-fuel waste, it is essential to know what kind of items and how many items are stored in the SFP. Second, to identify the dimension and characteristics of non-fuel waste stored in the SFP would be conducted. The configuration of non-fuel waste is important information to handle them. Third, the way to handle non-fuel waste would be deduced including analysis of their dimension, whether the equipment should be developed to handle each kind of non-fuel waste or not, how to transport them. In order to classify radioactive waste level and analyze the nuclide for the non-fuel waste, handling tools and the cask to transport them into the facility which nuclide analysis is able to be performed would be required. Fourth, the nuclide analysis technology would be identified. Also, domestic holding technology would be identified and which technology should be developed to classify the radioactive waste level for the non-fuel waste would be deduced. This preliminary study will provide KHNP-CRI with the insight for the nuclide analysis technology and future work which is following action for the non-fuel waste. Based on the result of above preliminary study, the feasibility of the research for the treatment of non-fuel waste would be evaluated and research plan would be established. In conclusion, the treatment of non-fuel waste stored in the spent fuel pool of domestic PWR should be considered to prepare the decommissioning. KHNP-CRI will identify the quantity, the dimension and kinds of non-fuel waste in the SFP of domestic PWR. Also, the various nuclide analysis technology would be identified and the technology which should be developed would be defined through this preliminary study.
        386.
        2023.05 구독 인증기관·개인회원 무료
        The disposal of spent nuclear fuel (SNF) poses a significant challenge due to its high radioactivity and heat generation. However, SNF contains reusable materials, such as uranium and trans-uranium, which can be recovered through aqueous reprocessing or pyrochemical processes. Prior to these processes, voloxidation is necessary to increase reaction kinetics by separating fuels from cladding and reducing the particle size. In the voloxidation, uranium dioxide (UO2) from SNF is heated in the presence of oxygen and oxidized to triuranium octoxide (U3O8), resulting a release of gaseous fission products (FPs), including technetium-99 (Tc-99), which poses a risk to human health and the environment due to its high mobility and long half-life of 2.1×105. To date, various methods have been developed to capture Tc in aqueous solutions. However, a means to capture the gaseous form of Tc (Tc2O7) is essential in the voloxidation. Due to the radioactive properties of technetium isotopes, rhenium is often used as a substitute in laboratory settings. The chemical properties of rhenium and technetium, such as their electronic configurations, oxidation states, and atomic radii, are similar and these similarities indicates that the adsorption mechanism for rhenium can be analogous to that for technetium. In the previous study, a disk-type adsorbent based on CaO developed was effective in capturing Re. However, this study lacked sufficient data on the chemical properties and capture performance of the adsorbent. Furthermore, the fabrication of disk-type adsorbents is time-consuming and requires multiple steps, making it impractical for mass production. This study introduces a simple and practical method for preparing CaO-based pellets, which can be used as an adsorbent to capture Re. The results provide a better understanding of the adsorption behavior of CaO-based pellets and their potential for capturing Tc-99. To the best of our knowledge, this is the first study to apply a CaO-based pellet to capture Re and investigate its potential for capturing Tc-99.
        387.
        2023.05 구독 인증기관·개인회원 무료
        High level radioactive waste disposal repository is faced thermos-hydro-mechanical-radioactive condition. Factors according to these complex conditions are measured using multiple sensors installed in the disposal repository to check integrity of the structure. Wires of the sensors can be potential pathways of groundwater and nuclide flow and these pathways accelerates bentonite saturation. Therefore, it is worth to developing wireless sensors buried in the bentonite buffer which can communicate without wires. In start of the study, widely-utilized wireless communication methods including WiFi and LoRa are tested using compacted bentonite blocks to estimate the performance of them. Compacted bentonite blocks are prepaired using di-press method with metal molds and the dry density of them are about 1.6 g/cm3. All wireless communication methods are well communicated through the bentonite blocks over 50 cm. The further experimental tests will be conducted with different dry density and water contents. The results of these experimental tests give a possibility of wireless communications in compacted bentonite buffer and will be utilized for the design of wireless sensor systems for the repository monitoring.
        388.
        2023.05 구독 인증기관·개인회원 무료
        In-depth disposal of spent nuclear fuel means safe disposal of spent nuclear fuel by the concept of a multi-barrier system composed of an artificial barrier, an engineering barrier, and a natural barrier system of natural rock at a depth of less than 500 m underground. Disposal canisters are needed to store high-level waste in a deep environmental for a long time, and in order to demonstrate the performance of deep disposal canisters for spent nuclear fuel at underground research facilities (URL), it is intended to design disposal canisters and manufacture internal canisters. The internal canisters of spent nuclear fuel disposal canisters manufactured as a result of the study are combined with external copper canister technology and are directly used for demonstration of engineering barrier performance in underground facilities (URL) essential for final disposal of spent nuclear fuel. Disposal canister manufacturing technology and manufacturing process are used to manufacture disposal canisters for future final disposal projects in connection with domestic unique disposal systems. The quality inspection and quality management technology applied when manufacturing disposal canisters contribute to securing the soundness of disposal canisters that primarily maintain the safety of in-depth disposal by using them in the actual disposal business. By visually showing the development status of domestic disposal technology by displaying the prototype of disposal canisters manufactured as major achivements, the public can raise awareness of the domestic technology and safety of in-depth disposal of spent nuclear fuel.
        389.
        2023.05 구독 인증기관·개인회원 무료
        In order to reduce the area of the high-level radioactive waste (HLW) repository, a buffer material with high thermal conductivity is required. This is because if the thermal conductivity of the buffer material is high, the distance between the disposal tunnels and the deposition holes can be reduced. Sand, which is a natural material and has higher thermal conductivity than bentonite, is added to bentonite to develop an enhanced buffer material. For the sand-bentonite mixture, it is important which sand to use and how much to add because an enhanced buffer material should satisfy both hydraulic (H) and mechanical (M) performance criteria while improving thermal conductivity (T). In this study, we would like to show what type of sand and how much sand should be added to develop an enhanced buffer material by adding sand to Gyeongju bentonite, a representative bentonite in Korea. For this purpose, the thermal conductivity, hydraulic conductivity, and swelling pressure of the sand-Gyeongju bentonite mixture according to the sand addition rate were measured. It is more efficient to use silica sand with smaller particles than Jumunjin sand which is a representative sand in Korea as an additive for an enhanced buffer material than using the Jumunjin sand. In order for the sand-Gyeongju bentonite buffer material to satisfy both the hydraulic and mechanical performance criteria as a buffer material while increasing the thermal conductivity, it is judged that the optimum dry density is 1.7 g/cm3 at least and the optimum sand addition rate is 10% at most.
        390.
        2023.05 구독 인증기관·개인회원 무료
        An important goal of dismantling process is the disassembling of a spent nuclear fuel assembly for the subsequent extraction process. In order to design the rod extractor and cutter, the major requirements were considered, and the modularization design was carried out considering remote operation and maintenance. In order to design the rod extractor and cutter, these systems were analyzed and designed, also the concept on the rod extraction and cutting were considered by using the solid works tool. The main module consists of five sub-modules, and the function of each is as follows. The clamping module is an assembly fixing module using a cylinder so that the nuclear fuel assembly can be fixed after being placed. The Pusher module pushes the fuel rods by 2 inches out of the assembly to grip the fuel rods. The extraction module extracts the fuel rods of the nuclear fuel assembly and moves them to the consolidation module. The consolidation module collects and consolidates the extracted fuel rods before moving them to the cutting device. And the support module is a base platform on which the modules of the main device can be placed. The modules of level 2 can be disassembled or assembled freely without mutual interference. For the design of fuel rods cutter, the following main requirements were considered. The fuel rod cut section should not be deformed for subsequent processing, and the horizontally mounted fuel rods must be cut at regular intervals. The cutter should have the provision for aligning with the fuel rod, and the feeder and transport clamp should be designed to transfer the fuel rods to the cutting area. The main module consists of 6 sub-modules, and function of each is as follows. The cutting module is a device that cuts the fuel rods to the appropriate depth for notching. The impacting module is a device that impacts the fuel rods and moves them to the collection module. The transfer module is a device that moves the fuel rods to the cutting module when the aligned fuel rods enter the clamp module. The clamping module is a device to clamp the fuel rods before moving them to the cutting module. The collection module is a container where the rod-cuts are collected, and the support module is a base platform on which the modules of the main device can be placed. The module of level 3 can be disassembled or assembled after the cutting module of level 2 is installed, and the modules of level 2 can be disassembled or assembled freely without mutual interference.
        391.
        2023.05 구독 인증기관·개인회원 무료
        The burnup of spent fuel is one of the important management items that must be managed before storing the fuel in dry storage facilities, as well as for transportation and disposal in the future. Currently, the burnup of spent fuel is managed by calculating the design burnup at the time of design and measuring the real burnup using in-reactor measurement devices. Furthermore, to ensure the reliability of such data, the burnup of spent fuel can be measured using burnup measurement equipment to compare and analyze the data. In fact, KHNP is measuring the burnup of spent fuel using the burnup measurement equipment (SICOM-NG-FA) developed by ENUSA in Spain. The burnup measurement equipment analyzes the axial burnup profile of spent fuel using gamma and neutron detectors. Burnup measurement is performed by moving the spent fuel up and down inside the measurement equipment and measuring the burnup of the fuel surface facing the gamma and neutron detectors. This paper aims to compare the results of measuring the burnup of spent fuel on two sides versus four sides using the burnup measurement equipment.
        392.
        2023.05 구독 인증기관·개인회원 무료
        A phosphorylation (phosphate precipitation) technology of metal chlorides is considering as a proper treatment method for recovering the fission products in a spent molten salt. In KAERI’s previous precipitation tests, the powder of lithium phosphate (Li3PO4) as a precipitation agent reacted with metal chlorides in a simulated LiCl-KCl molten salt. The reaction of metal chlorides containing actinides such as uranium and rare earths with lithium phosphate in a molten salt was known as solidliquid reaction. In order to increase the precipitation reaction rate the powder of lithium phosphate dispersed by stirring thoroughly in a molten salt. As one of the recovery methods of the metal phosphates precipitated on the bottom of the molten salt vessel cutting method at the lower part of the salt ingot is considered. On the other hand, a vacuum distillation method of all the molten salt containing the metal phosphates precipitates was proposed as another recovering method. In recent study, a new method for collecting the phosphorylation reaction products into a small recovering vessel was investigated resulting in some test data by using the lithium phosphate ingot in a molten salt containing uranium and three rare earth elements (Nd, Ce, and La). The phosphorylation experiments using lithium phosphate ingots carried out to collect the metal phosphate precipitates and the test result of this new method was feasible. However, the reaction rate of test using lithium phosphate ingot is very slower than that of test using lithium phosphate powder. In this presentation, the precipitation reactor design used for phosphorylation reaction shows that the amount of molten salt transferred to the distillation unit will reduce by collecting all of the metal phosphates that will be generated using lithium phosphate powder into a small recovering vessel.
        393.
        2023.05 구독 인증기관·개인회원 무료
        This study investigates the behavior of the thermal conductivity among material properties in order to develop a thermal evaluation methodology of spent fuel assembles in a transport cask. It is inefficient to model each element of the spent fuel assembly in detail, and it is generally calculated by modeling the effective thermal conductivity (ETC). The ETC model was developed to allow a much simpler representation of a spent fuel assembly within a fuel compartment by treating the entire spent fuel rod array and the surrounding fill gas within the confines of the compartment as a homogenous solid material. The fuel rod assembly and surrounding gas are modeled with an effective conductivity that is designed to yield an overall conduction heat transfer rate that is equivalent to the combined effect of local conduction and radiation heat transfer in a plane through the assembly. When this model is applied to the transport cask, it tends to predict the cladding peak temperature lower than the results of detailed model in which the fuel rod arrangement and shape of the fuel assembly are simulated. As for the tendency of the error, the model tended to under-predict when basket temperature was lower than a certain temperature, and over-predict when it was higher. The purpose of this study is to investigate the attenuation effect of the cladding peak temperature on the related variables when the ETC model is applied to the transport cask. In addition, based on the thermal characteristics of this model, a correction factor that can compensate for this attenuation effect is presented. This correction factor is obtained by finding the difference between a separate ETC homogeneous model and a separate detailed fuel model, rather than directly applying the ETC calculated from the detailed fuel model to the transport cask.
        394.
        2023.05 구독 인증기관·개인회원 무료
        In this paper, a basic study was conducted to observe the temperature inside the tube according to the heating temperature of the tube furnace. In a tube furnace, a tube is inserted, and the air space outside the tube is heated to increase the temperature of the gas inside the tube through conduction of the tube. Tube furnaces are widely used in research to capture volatile nuclides. In this case, a volatile nuclide capturing filter is inserted inside the tube, and an appropriate temperature is required to capture it. Since the tube furnace heats the air space outside the tube to the target temperature, a difference from the temperature inside the tube occurs. In particular, if a flow of gas occurs inside the tube, a larger temperature difference may occur. In order to confirm this temperature difference, an experimental device was constructed, and basic data was produced through several experiments. The following studies were conducted to produce data. First, the temperature of the air layer of the heating unit and the temperature inside the tube were measured in real time in the absence of gas flow inside the tube. Second, the temperature of the air layer of the heating unit and the temperature inside the tube were measured in real time while air having a certain temperature was flowing inside the tube. As a result of the experiment, when there is no flow inside the tube, when the heating target temperature is low, the temperature inside the tube is significantly lower than the target temperature, and when the target temperature is high, the temperature inside the tube approaches the target temperature. It was found that when there is about 20°C air flow inside the tube, the temperature inside the tube is significantly lowered even if the heating target temperature is high. In the future, additional research on changing the temperature of the gas flowing inside the tube will be conducted, and the results of this study are expected to greatly contribute to the design of a tube furnace that captures volatile nuclides.
        395.
        2023.05 구독 인증기관·개인회원 무료
        The dry storage of spent fuel has become an increasingly important issue in the field of nuclear energy. Square-gridded baskets have been widely used for the storage of spent fuel because of their superior heat transfer and structural integrity. In this paper, we review the fabrication process of square-gridded baskets for dry storage of spent fuel. The review includes the design considerations, material selection, manufacturing methods, and quality control measures. We also discuss the challenges and opportunities for further improvement in the fabrication of square-gridded baskets. The fabrication of square-gridded baskets is a critical process for the safe and reliable dry storage of spent fuel. The review of the fabrication process highlights the importance of design considerations, material selection, manufacturing methods, and quality control measures. Continued efforts to improve the fabrication process will help to ensure the safe and secure storage of spent fuel.
        396.
        2023.05 구독 인증기관·개인회원 무료
        As a method for chlorinating spent nuclear fuel, a method of using ZrCl4 in high-temperature molten salt is known. However, ZrCl4 has a sublimation property that vaporizes at a temperature similar to the melting temperature of molten salt. Since solubility of ZrCl4 in molten salt is very low, it is difficult to dissolve a large amount of ZrCl4 in molten salt. However, once ZrCl4 can be dissolved together with the molten salt, it remains in the molten salt without vaporizing. That is, it is known that when vaporized ZrCl4 reacts with molten salt in a sealed reactor, it dissolves into the molten salt, and ZrCl4 above the solubility remains in the molten salt in the form of M2ZrCl6. Here, M represents an alkali element. Therefore, in this study, a flange-type sealed reactor was fabricated to dissolve a large amount of ZrCl4 in LiCl-KCl salt, and LiCl-KCl salt in which ZrCl4 was dissolved as K2ZrCl6 was prepared. LiCl-KCl, KCl, and ZrCl4 salts were charged into alumina crucibles and placed in a sealed reactor. The reactor was heated to 500°C and the reaction time was about 20 hours. The temperature of the reactor surface was about 480°C. After completion of the reactions, each crucible was recovered from the inside of the reactor. All of the ZrCl4 vaporized and there was no residue in the crucible. Both KCl and LiCl-KCl salts appear to have dissolved and then cooled, with respective weight gains. XRD analysis was performed to observe the structure of the recovered salts, and ICP analysis was performed to measure the Zr element content in each salt. As a result of XRD analysis, the structure of K2ZrCl6 was found in the KCl salt, but not in the LiCl-KCl salt. As a results of ICP analysis, it was found that the LiCl-KCl salt contained about 33wt% of ZrCl4, and about 25wt% was dissolved in the KCl salt. In other words, it was shown that ZrCl4 above the solubility can be dissolved in the LiCl-KCl molten salt.
        397.
        2023.05 구독 인증기관·개인회원 무료
        As temporary storage facilities for spent nuclear fuel (SNF) are becoming saturated, there is a growing interest in finding solutions for treating SNF, which is recognized as an urgent task. Although direct disposal is a common method for handling SNF, it results in the entire fuel assembly being classified as high-level waste, which increases the burden of disposal. Therefore, it is necessary to develop SNF treatment technologies that can minimize the disposal burden while improving long-term storage safety, and this requires continuous efforts from a national policy perspective. In this context, this study focused on reducing the volume of high-level waste from light water reactor fuel by separating uranium, which represents the majority of SNF. We confirmed the chlorination characteristics of uranium (U), rare earth (RE), and strontium (Sr) oxides with ammonium chloride (NH4Cl) in previous study. Therefore, we prepared U-RE-SrOx simulated fuel by pelletizing each elements which was sintered at high temperature. The sintered fuel was again powdered by heating under air environment. The powdered fuel was reacted with NH4Cl to selectively chlorinate the RE and Sr elements for the separation. We will share and discuss the detailed results of our study.
        398.
        2023.05 구독 인증기관·개인회원 무료
        Separating nuclides from spent nuclear fuel is crucial to reduce the final disposal area. The use of molten salt offers a potential method for nuclide separation without requiring electricity, similar to the oxide reduction process in pyroprocessing. In this study, a molten salt leaching technique was evaluated for its ability to separate nuclides from simulated oxide fuel in MgCl2 molten salts at 800°C. The simulated oxide fuel contained 2wt% Sr, 3wt% Ba, 2wt% Ce, 3wt% Nd, 3wt% Zr, 2wt% Mo, and 89wt% U. The separation of Sr from the simulated oxide fuel was achieved by loading it into a porous alumina basket and immersing it in the molten salt. The concentration of Sr in the salt was measured using ICP analysis after sampling the salt outside the basket with a dip-stick technique. The separated nuclides were analyzed with ICP-OES up to a duration of 156 hours. The results indicate that Ba and Sr can be successfully separated from the simulated fuel in MgCl2, while Ce, Nd, and U were not effectively separated.
        399.
        2023.05 구독 인증기관·개인회원 무료
        It has been investigated on the management of the nuclides in KAERI. Strontium-90 is a high heatgenerating nuclide in spent nuclear fuel. It is needed to separate the salt from the salt solution for the recovery of strontium after the chlorination of the strontium oxide in molten salt. A vacuum distillation technology was used for the separation of strontium from the molten salt. It was investigated on operating conditions of reactive distillation process for the recovery of the strontium from the salt solution. At a reduced pressure, considerable amount of the carbonation agents such as K2CO3 and Li2CO3 were reduced during heating in the distiller due to the thermal decomposition. Therefore, the two step process was proposed, which is composed of a reaction step at an atmospheric pressure and a salt distillation step at a reduced pressure. In the reaction step, the condition of low temperature and high pressure is suitable to suppress the decomposition of the carbonation agent. In the salt distillation step, reduced pressure is preferable at a suitable temperature depending on the evaporation rate of the salt.
        400.
        2023.05 구독 인증기관·개인회원 무료
        The damage ratio of Spent Nuclear Fuel (SNF) is a very important intermediate variable for dry storage risk assessment which require an interdisciplinary and comprehensive investigation. It is known that the pinch load applied to the cladding can lead to Mode-3 failure and the cladding becomes more vulnerable to this failure mode with the existence of radial hydrides and other forms of mechanical defects. In this study, a sensitivity analysis was performed to evaluate the importance of the damage parameters that need to be calibrated for the simulation of zircaloy-4 cladding failure using computational mechanics. The simulation model was generated from a microscopic image of the cladding with hydride. The image segmentation method was used to separate the Zircaloy-4, hydride, and hydride- Zircaloy matrix interfaces to create a pixel-based finite element model. The ring compression test (RCT) was simulated because the resistance of the cladding under pinch load can be evaluated by this test. It was assumed that the damage starts with the formation and growth of voids or small cracks in the material, which grow and combine to form larger cracks, eventually leading to the complete fracture of the material. Therefore, the ductile damage criterion was applied to all materials to simulate crack formation and propagation. The sensitivity analysis was performed based on the design of experiments using L8 orthogonal array. The effects of five factors on the fracture resistance of hydrided cladding were quantified, and they are the fracture strains describing the damage initiation in zircaloy-4 matrix, hydride, and hydride-zirconium matrix, and yield stress and Young’s modulus for hydride-zirconium matrix. Information on those parameters are hardly available in literature and experimental data which enable the estimation of those are also very rare. It is planned to build a computational model which can accurately simulate the fracture behavior of hydrided cladding by calibrating significant fracture parameters using reverse engineering. The results of this study will help to figure out those significant parameters.