검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 77

        65.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        The development of random amplified polymorphic DNA (RAPD) and expressed sequence tag-derivedsimple sequence repeats (EST-SSRs) provided a useful tool for investigating Korean ginseng genetic diversity. In this study,18 polymorphic markers (7 RAPD and 11 EST-SSR) selected to assess the genetic diversity in 31 ginseng accessions (11Korean ginseng cultivars and 20 breeding lines). In RAPD analysis, a total of 53 unique polymorphic bands were obtainedfrom ginseng accessions and number of amplicons ranged from 4 to 11 with a mean of 7.5 bands. Pair-wise genetic similaritycoefficient (Nei) among all pairs of ginseng accessions varied from 0.01 to 0.32, with a mean of 0.11. On the basis of theresulting data, the 31 ginseng accessions were grouped into six clusters. As a result of EST-SSR analysis, 11 EST-SSR mark-ers detected polymorphisms among the 31 ginseng accessions and revealed 49 alleles with a mean of 4.45 alleles per primer.The polymorphism information content (PIC) value ranged from 0.06 to 0.31, with an average of 0.198. The 31 ginsengaccessions were classified into five groups by cluster analysis based on Nei’s genetic distances. Consequently, the results ofginseng-specific RAPD and EST-SSR markers may prove useful for the evaluation of genetic diversity and discrimination ofKorean ginseng cultivars and breeding lines.
        66.
        2013.10 KCI 등재 서비스 종료(열람 제한)
        Korean ginseng (P. ginseng C. A. Meyer) is one of the most important medicinal plant in the world. Understanding genetic variability among the assortment of Korean ginseng is important for breeding. The aim of this study was to molecularly characterize Korean ginseng cultivar and breeding lines through the use of eight previously reported STS markers (MFGp183, MFGp130, MFGp110, UFGp74, UFGp163, MFGp108, MFGp81 and UFGp156). All STS markers produced interpretable electropherograms from 31 accessions consisting of 11 Korean ginseng cultivars and 20 breeding lines. When eight STS markers were combined, we identified to total 19 genetic patterns; in particular, nine cultivars (Chunpoong, Yunpoong, Gopoong, Gumpoong, Sunpoong, Sunone, Cheongseon, Sunhyang, Cheonryang) and 5 breeding lines (G08012, G04079, G04075, G08036, G04110) in ginseng samples can be discriminated from the others. Together with other available markers, these STS markers will contribute to the management of ginseng genetic resources and the protection of breeders' rights.
        70.
        2013.04 KCI 등재 서비스 종료(열람 제한)
        This study describes the identification of Panax species using mitochondrial consensus primers. Initially, a total of thirty primers were tested in ten Korean ginseng cultivars and two foreign Panax species, P. quinquefolius and P. notoginseng. In the polymerase chain reaction (PCR) amplification results, three primers (cox1, nad1/2-3 and nad2/1-2) generated co-dominant polymorphic banding patterns discriminating Korean ginseng cultivars from P. quinquefolius and P. notoginseng. However, these primers could not generated polymorphisms among the Korean ginseng cultivars, and simply represented species-specific polymorphisms for P. quinquefolius and P. notoginseng. Primers PQ91 and PN418 were designed from the consensus sequence of nad1/2-3 region. Two banding patterns (A or B) were detected in PQ91. Korean ginseng cultivars and P. notoginseng shared the same banding pattern (A type) and P. quinquefolius was identified another banding pattern (B type). In the case of PN418, two banding patterns (A or B) were detected in the Korean ginseng cultivars and two foreign Panax species. Korean ginseng cultivars and P. quinquefolius shared the same banding pattern (A type) and P. notoginseng was identified another banding pattern (B type). The combination banding patterns of three Panax species, Korean ginseng cultivars (Panax ginseng C. A. Mey.), P. quinquefolius and P. notoginseng, was identified as 'AA', 'BA' and 'AB', respectively. Consequently, PQ91 and PN418 primer sets can be used to distinguish among Panax species.
        71.
        2012.10 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to identify Korean ginseng cultivars using peptide nucleic acid (PNA) microarray. Sixty-seven probes were designed based on nucleotide variation to distinguish Korean ginseng cultivars of Panax ginseng. Among those PNA probes, three (PGB74, PGB110 and PGB130) have been developed to distinguish five Korean ginseng cultivars. Five Korean ginseng cultivars were denoted as barcode numbers depending on their fluorescent signal patterns of each cultivar using three probe sets in the PNA microarray. Five Korean ginseng cultivars, Chunpoong, Yunpoong, Gopoong, Gumpoong and Sunpoong, were simply denoted as '111', '222', '211', '221' and '122', respectively. This is the first report of PNA microarray which provided an objective and reliable method for the authentication of Korean ginseng cultivars. Also, the PNA microarray will be useful for management system and pure guarantee in ginseng seed.
        72.
        2012.08 KCI 등재 서비스 종료(열람 제한)
        In this study, Expressed Sequence Tag-Simple Sequence Repeat (EST-SSR) analyses were used to clarify the genetic polymorphisms among Korean ginseng cultivars and breeding lines and to classify them into distinct genetic groups. Polymorphic and reproducible bands were produced by 14 primers out of total 30 primers used in this study. Fourteen EST-SSR loci generated a total of 123 bands. Amplified PCR products showed the highly reproducible banding patterns at 110~920 bp. The number of amplified bands for each EST-SSR primers ranged from 2 to 19 with a mean of 8.8 bands. P26 and P35 primers showed 13 and 12 banding patterns, respectively. The number of alleles for each EST-SSR locus ranged from 1.67 to 2.00 with a mean of 1.878 alleles. P34 and P60 primers showed the highest and the lowest genetic polymorphism, respectively. Cluster analysis based on genetic similarity estimated by EST-SSR markers classified Korean cultivars and breeding lines into 4 groups. Group included Gopoong and Chunpoong and 9 breeding lines (55%), group included 2 breeding lines (10%), group included 3 breeding lines (15%), group included Gumpoong and 3 breeding lines (20%). Consequently, the EST-SSR marker developed in this study may prove useful for the evaluation of genetic diversity and differentiation of Korean ginseng cultivars and breeding lines.
        73.
        2012.08 KCI 등재 서비스 종료(열람 제한)
        These studies were conducted to provide basic information on Korean ginseng cultivars and breeding lines (Panax ginseng C. A. Mey.) and to identify the variations that can be utilized in ginseng breeding programs. The agronomic characteristics was used to clarify the genetic relationships among Korean ginseng cultivars and breeding lines and to classify them into distinct genetic groups. Angle of petiole and number of fibrous root showed a wide variation from 15.0~67.8˚ and 0~5, respectively. The average plant length was 54.2cm with a range of 37.9~64.8cm and the average stem diameter was 5.6mm with a range of 4.0~7.5mm. The average stem length was 31.9cm with a range of 21.8~37.9cm and the average root weight was 38.1 g with a range of 23.0~52.0 g. The 24 Korean ginseng cultivars and breeding lines were classified into 4 groups based on agronomic characteristics using the complete linkage cluster analysis. The I, II, III and IV groups included the 60.8%, 7.4%, 13.1% and 8.7% of the cultivars and breeding lines, respectively. The breeding lines in group I could be characterized as the group with the highest growth characters and yield components, such as plant length, stem diameter and root weight. The root weight, the yield component, had highly significant positive correlations with stem diameter, plant length and stem length.
        74.
        2011.10 KCI 등재 서비스 종료(열람 제한)
        In this study, simple sequence repeat (SSR) analyses were utilized for evaluation of genetic diversity and discrimination of 17 accessions. Five cultivars, which were developed from Korea, and 12 foreign accessions, which were collected from China, Japan, Russia and USA, were evaluated by nine markers out of 22 SSR markers. A total of 39 alleles were detected, ranging from 2 to 8, with an average of 4.3 alleles per locus. The expected heterozygosity and PIC values were 0.627 and 0.553, with a range from 0.21 (GB-PG-078) to 0.76 (GB-PG-142) and from 0.19 (GB-PG-078) to 0.70 (GB-PG-142), respectively. Four makers out of nine SSR markers, GB-PG-026, GB-PG-043, GB-PG-142 and GB-PG-177, were selected as key factors for discrimination of Korean ginseng cultivars and foreign accessions. All of Korean ginseng cultivars and foreign accessions were individually by the combination of four SSR markers. Consequently, the SSR markers developed in this study may prove useful for the evaluation of genetic diversity and discrimination of Korean ginseng cultivars and foreign accessions.
        75.
        2011.06 KCI 등재 서비스 종료(열람 제한)
        The principal objective of this study was to develop a discrimination method using SSR markers in Korean ginseng cultivars. Five cultivars--Chunpoong, Yunpoong, Gopoong, Sunpoong, and Kumpoong--were evaluated by nine markers out of 22 SSR markers. A total of 23 alleles were detected, ranging from 1 to 4, with an average of 2.6 alleles per locus, and an averages of gene diversity (GD) of 0.480. Nine markers were tested in order to distinguish among five Korean ginseng cultivars. Two markers out of nine SSR markers, GB-PG-065 and GB-PG-142, were selected as key markers for discrimination among Korean ginseng cultivars. Two genotypes were detected in GB-PG-065. Chunpoong and Kumpoong shared the same allele type, and Yunpoong, Gopoong, and Sunpoong shared another identical allele type. In the case of GB-PG-142, a specific allele type differentiated from those of other four cultivars was observed only in Sunpoong cultivar. Consequently, the SSR markers developed in this study may prove useful for the identification of Korean ginseng cultivars and the development of ginseng seed management systems, as well as tests to guarantee the purity of ginseng seeds.
        76.
        2010.06 KCI 등재 서비스 종료(열람 제한)
        This study describes an efficient approach to the development of DNA markers for use in distinguishing the Scrophularia species that have been used as useful medicinal crops. In order to distinguish Scrophularia species, DNA sequences of rpl-5 region in mitochondrial DNA of Scrophularia species were analysed for detecting sequence variations, and the PCR-RFLP method was applied for developing practicable DNA marker patterns. Several DNA variations were detected by the sequence comparison of rpl-5 region among Scrophularia species. Genetic relationship analysis of Scrophularia species was carried out based on these DNA variations. DNA variations of rpl-5 region were revealed that it was significantly efficient in genetic relationship analysis of Scrophularia species. In addition, Scrophularia species tested in this study were completely discriminated by four polymorphic genotypes by PCR-RFLP combined with Tsp509 I (^AATT) restriction enzyme. Our results suggested that DNA sequence variations of rpl-5 region were sufficiently useful for genetic relationship analysis of Scrophularia species. Polymorphic genotypes by PCR-RFLP using the Tsp509 I enzyme will be useful for discrimination of Scrophularia species as a practicable DNA markers.
        77.
        1998.04 KCI 등재 서비스 종료(열람 제한)
        In this research, two stochastic models are considered to detect and estimate the effect of air temperature change due to industrialization in Ulsan area. Using the monthly mean minimum air temperature anomalies, the data are divided into pre-industrialization part and industrialization one for analysis. The ARMA(autoregressive moving-average) model and intervention model have been applied to the data for the analysis. The results show that the variability of minimum temperature anomalies are very significant in 1989, and also significant in 1971 when the industrialization have started. Therefore, it is stochastically possible to estimate the time when the affection of increase of the temperature concerning industrialization to climate change in Ulsan area has happened.
        1 2 3 4