검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,053

        86.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to examine the changes in dry matter yield and growth characteristics of alfalfa (Medicago sativa L.) in response to variations in sowing dates during the autumn season of 2021-22 in a dry paddy field of Chilbo-myeon, Jeongeup-si, Jeollabuk-do. Treatments comprised four sowing dates at 10-day intervals, i.e., October 8, October 18, October 28, and November 8, 2021. The winter survival rate of alfalfa showed a significant difference between different treatments but was at a satisfactory level for all (p<0.05). The winter survival rate for the fourth sowing date, a month later than the first sowing date, was approximately 11.7% lower than that for the first sowing date. The plant height ranged between 82.3–93.1 cm and 60.5–63.7 cm at the first and second harvest, respectively, smaller at the second harvest than at the first harvest. The total dry matter yield of alfalfa was the highest at 13,316 kg/ha for the first sowing date, and the later the sowing date, the lower the dry matter yield. The protein content of alfalfa ranged between 13.6–17.3% in the first harvest, lower than the standard alfalfa protein content of 20% or more. In relative feed value, the first sowing (Oct. 8) was the most significantly higher in the first harvest (p<0.05). These results suggest that the early and mid-October sowing dates are optimum for sowing alfalfa during autumn and result in improved plant growth, dry matter yield, protein content, and winter survival compared to those at later sowing dates. Therefore, dry paddy fields can be safely employed for alfalfa cultivation with sowing dates in early and mid-October during autumn.
        4,000원
        87.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Although various conventional approaches have been employed to reduce spasticity in neurological rehabilitation, only a few studies have shown scientific evidence for its effectiveness. Thus, we introduced a different concept (Ueda method) of rehabilitation therapy that can complement the limitations of conventional therapy. Objects: This study aimed to investigate the immediate effects of the application of the Ueda method on patients with spasticity after stroke via an electrophysiological study. Methods: We conducted a randomized double-blind pilot study in two rehabilitation hospitals involving 30 stroke patients who were randomly allocated to the Ueda (n = 15) and convention (n = 15) groups. Electromyographic data of six examined muscles in both upper extremities of all patients were recorded. The A-ApA index and activation ratios of upper extremity muscles were evaluated and compared between the groups to confirm post-intervention changes in upper-extremity flexor spasticity and flexion synergies. Repeated-measures analysis of variance was conducted to confirm the therapeutic effect (2 × 2) as a function of group (Ueda vs. convention) and time (pre-/post-intervention) on all outcome measures (p < 0.05). Results: In the Ueda group, the mean A-ApA index values differed significantly before and after the intervention (p = 0.041), indicating a weak evidence level; however, the effect size was medium (d = –0.503). The interaction effects of the A-ApA index between the Ueda and convention groups and between pre-intervention and post-intervention stages were significant (p = 0.012). The effect size was large (np 2 = 0.220). In the Ueda group, the activation ratios of the anterior deltoid fiber significantly decreased after the intervention in all reaching tasks. Conclusion: The Ueda method reduces upper-extremity flexor spasticity and changes its synergy in stroke patients and should be considered a rehabilitation therapy for spastic stroke patients.
        4,000원
        88.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study evaluated the Protaetia brevitarsis larvae powder’s characteristic changes using hot air drying (60±2.5oC, 12 h) with different pre-treatment methods, including two sacrifice methods, two storage temperatures, and two defatting processes. Appearance, yield, moisture contents, pH, color, proximate analysis, volatile basic nitrogen level, DPPH radical scavenging activity, and total phenol content were assessed. Results revealed that a combination of blanching, defatting, and -20oC storage temperature resulted in higher total phenol contents, lower water contents, and lower volatile basic nitrogen levels than other methods. Defatted treatment resulted in a higher L-value than the non-defatted treatment. Taken together, these results indicate that a combination of -20oC storage, blanching, and defatting is the optimal pre-treatment method for obtaining P. brevitarsis larvae powder with high total phenol content, low water content, and low volatile basic nitrogen, taking into account cost efficiency considerations.
        4,000원
        89.
        2022.05 구독 인증기관·개인회원 무료
        Once a radioactive material is released from the nuclear power plant (NPP) by accident, it is necessary to understand the behavior of radioactive plume to protect residents adequately. For this, it is essential to measure the radiation dose rate around NPPs at important locations. Our previous study developed a movable radiation detector that can be installed quickly in an accident to measure gamma dose rate in areas where environmental radiation monitoring system is not installed. The data measured by the detector are transmitted to the server in real-time through LoRA wireless communications. There are two methods to use LoRA communications; one is self-network, and the other is the network provided by the mobile carrier. A signal receiver, called a gateway, should be equipped near the installation location of radiation detectors to use a self-network without using the mobile carrier’s system. In other words, the movable radiation detectors we made can function if there should be any gateway near them. The distance capable of communication between gateway and detector is about 8 km in an open area without significant obstacles. Korea has many significant obstacles, such as mountains around most NPPs. Thus, the gateways could be installed in the proper position before the accident to operate the movable radiation detectors without problems. If the gateway is located at a high position like a mountain top, it could cover a wide area. In this study, the elevation database in the area around the NPPs was collected and analyzed to determine where gateways should be installed. The analysis range is limited in the urgent protective action planning zone. The optimization was also performed to minimize the number of gateways.
        90.
        2022.05 구독 인증기관·개인회원 무료
        The Kori Unit 1 and Wolsong Units 1, commercial reactors in South Korea, were permanently shut down due to the expiration of their design lifetime. Therefore, nuclear power plants that have been permanently shut down must be dismantled, and the site must be finally released after removing the remaining radionuclides. Domestic regulatory standards for site remediation should not exceed 0.1 mSv per year based on effective dose. In addition, it is necessary to calculate the preliminary Derived Concentration Guideline Levels (DCGL) to prove that the conditions are met. Therefore, in this study, the input factor considering the geological characteristics of the site of Kori Unit 1 was investigated, and the preliminary Derived Concentration Guideline Levels were calculated and compared with the results of previous studies. As a result of comparative analysis, 60Co, 134Cs, and 137Cs, which are gamma-ray emitting radionuclides, had similar values to DCGL of previous studies A and B. However, 63Ni, a beta-rayemitting nuclide, was 5.94×104 Bq·g−1 in this study and 8.47×101 Bq·g−1in previous study B, resulting in a difference of about 700 times. In addition, in the case of 90Sr, this study and previous study A were derived similarly, but this study was 5.34×101 Bq·g−1 and previous study B was 1.18×10−1 Bq·g−1, resulting in a difference of about 450 times. This difference is judged to be because, unlike this study using only the industrial worker scenario, in the case of previous study B, the resident farmer scenario was mixed and used, which considers the internal exposure caused by ingestion of food produced in the contaminated area. In this study, it was confirmed that DCGL according to the change of geological factors of the site did not have a significant effect on gamma-ray-emitting nuclides. However, it was confirmed that considering the intake of food affects the DCGL of beta-ray-emitting nuclides. Therefore, there is a need to conduct future studies applying intake input factors that meet domestic conditions.
        91.
        2022.05 구독 인증기관·개인회원 무료
        For transport containers for radioactive wastes, a drop test should be performed at a height of 0.3– 1.2 m on a rigid target depending on the weight as a normal condition in the regulation. In the drop test, a strain gauge is commonly used to measure the local strain, and the position of the strain gauges is determined by the experiences of the engineer in advance of the test. For this reason, the strains can be measured at only predetermined points. The DIC (Digital Image Correlation) method using highspeed cameras can be used to measure the change in strain over the region of interest. In addition, it is possible to measure effectively even in areas with high strain gradients that are difficult to measure with strain gauges. Therefore, the DIC method can measure the strain change according to time over the entire load path. When the drop test of the transport container is performed, the impact load is delivered through the lower corner fittings-corner posts-upper corner fittings-lids. In this study, white spray was sprayed on these main load path, and black speckles were created on the spayed surface to trace the rigid motion of speckles. The images taken during the drop test can be used to create a strain field over region of interest.
        92.
        2022.05 구독 인증기관·개인회원 무료
        In this study, a drop analysis of metallic disposal containers for radioactive wastes is performed according to accident scenarios at the disposal site. The weight of the disposal container is about 8 tons, and the ingot-type wastes are loaded in the disposal container. To simulate the floor of the disposal site as the impact target, the reinforced concrete pad is modeled. High impact energy of the disposal container due to their heavy weight and high drop height causes excessive deformation and failure of the concrete target having relatively weak strength. Dynamic growth of cracks due to such failures causes penetration and delamination of concrete. Since the impact force delivered to the container strongly depends on the failure of the concrete pad, it is important to properly simulate the failure of the concrete in the drop analysis. A material erosion method can be used to simulate the concrete failure. In the case of applying erosion based on the finite element method (FEM), the element is deleted when the element exceeds a certain criterion, which causes material and energy loss problem. To solve this problem, mesh-free methods such as smoothed particle hydrodynamics (SPH) can be commonly used, but the mesh-free method has the disadvantage of incurring high numerical cost. Therefore, an adaptive method combining SPH and FEM-based SOLID elements is used for concrete target modeling to simulate excessive deformation and failure of the concrete target. In the adaptive coupling method of SPH and SOLID, the concrete target is first modeled as a solid element. When the damage of concrete exceeds the failure criterion, the solid element is eroded and the SPH element replacing the solid element is activated. Since the activated SPH element continues to participate in the impact, the problem of loss of materials and energy can be effectively solved. In this way, analysis results consistent with actual physical phenomena can be obtained.
        99.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study deals with replacement analysis of deteriorated equipment for improving productivity of production system. Frequent breakdown of the deteriorated equipment causes a situation that reduces productivity such as low product quality, process delay, and repair cost. However, the replacement of new equipment will be required a high initial investment cost, so it is important to analysis the economic feasibility. Therefore, we analyze the effect of the production system due to the aging effect of the equipment and the feasibility of equipment replacement based on the economic analysis. The process flow, working time, logistics movement, etc. are analyzed in order to build the simulation modeling for a ship and land switchboard production system. Using numerical examples, the economic feasibility analysis of equipment replacement through replacement of existing deteriorated equipment and additional arrangement of new facilities is performed.
        4,000원
        100.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Pyroprocessing is a promising technology for managing spent nuclear fuel. The nuclear material accounting of feed material is a challenging issue in safeguarding pyroprocessing facilities. The input material in pyroprocessing is in a solid-state, unlike the solution state in an input accountability tank used in conventional wet-type reprocessing. To reduce the uncertainty of the input material accounting, a double-stage homogenization process is proposed in considering the process throughput, remote controllability, and remote maintenance of an engineering-scale pyroprocessing facility. This study tests two types of mixing equipment in the proposed double-stage homogenization process using surrogate materials. The expected heterogeneity and accounting uncertainty of Pu are calculated based on the surrogate test results. The heterogeneity of Pu was 0.584% obtained from Pressurized Water Reactor (PWR) spent fuel of 59 WGd/tU when the relative standard deviation of the mass ratio, tested from the surrogate powder, is 1%. The uncertainty of the Pu accounting can be lower than 1% when the uncertainty of the spent fuel mass charged into the first mixers is 2%, and the uncertainty of the first sampling mass is 5%.
        4,000원
        1 2 3 4 5