검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9,279

        151.
        2023.11 구독 인증기관·개인회원 무료
        This study presents a rapid and sequential radiochemical separation method for Pu and Am isotopes in radioactive waste samples from the nuclear power plant with anion exchange resin and TRU resin. After radionuclides were leached from the radioactive waste samples with concentrated HCl and HNO3, the sample was allowed to evaporate to dryness after filtering the leaching solution with 0.45 micron filter. The Pu isotopes were separated in HNO3 medium with anion exchange resin. For leaching solution passed through anion exchange column, the Am isotopes were separated with TRU resin. The purified Pu and Am isotopes were measured by alpha spectrometer, respectively, after micro-precipitation of neodymium. The sequential radiochemical separation of Pu and Am isotopes in radioactive waste samples using anion exchange resin and TRU resin was validated with ICP-MS system.
        152.
        2023.11 구독 인증기관·개인회원 무료
        Molten Salt Reactor, which employs molten salt mixture as fuel, has many advantages in reactor size and operation compared to conventional nuclear reactor. In developing Molten Salt Reactor, the behavior of fission product in operation should be preliminary evaluated for the correct design of reactor and its associated system including off-gas treatment. In this study, for 100 Mw 46 KCl- 54 UCl3 based Molten Salt Reactor with operating life time of 20 year, the fission product behavior was estimated by thermodynamic modeling employing FactSage 8.2. Total inventory of all fission product were firstly calculated using OpenMC code allowing depletion during neutronic calculation. Then, among all inventory, 46 element species from Uranium to Holmium were chosen and given to the input for equilibrium module of Factsage with its mass. In phase equilibrium calculation, for the correct description of solution phase, KCl-UCl3 solution database based on modified quasichemical model in the quadruplet approximation (ANL/CFCT-21/04) was employed and the coexisting solid phase was assumed to pure state. With the assumption of no oxygen and moisture ingress into reactor system, equilibrium calculation showed that 1% of solid phase and of gas phase were newly formed and, in gas phase, major species were identified : ZrCl4 (47%), Xe (33%), UCl4 (14%), Kr (5%), Ar (1%) and others. This result reveals that off-gas treatment of system should account for the appropriate treatment of ZrCl4 and UCl4 besides treatment of noble gas such as Xe and Kr.
        153.
        2023.11 구독 인증기관·개인회원 무료
        Most of the C-14 produced is in the organic form, generated as methane (14CH4), methanol (14CH3OH), formaldehyde (14CH2O), and formic acid (14CO2H2). When analyzing C-14, it is transformed into the form of 14CO2, and its concentration is determined using LSC. Typical examples include the wet oxidation method, the combustion or Pyrolysis. The wet oxidation method uses strong acids and involves repeated operations, which generates large amounts of acid waste and secondary radioactive waste. The combustion method uses high temperatures, which requires an oxygen device. Pyrolysis also requires high temperature in a vacuum and catalysts. Catalysts are expensive because they are platinum-based. To compensate for these shortcomings, a C-14 analysis method using UV irradiation was developed. In this study, 100 mL of distilled water mixed with formic acid (CO2H2), potassium persulfate (K2S2O8), and silver nitrate (AgNO3) was irradiated with a 320-390 nm UV lamp to conduct a CO2 production reaction experiment. The UV range was measured using a photometer (UV Power puck II). The beaker was made of quartz in 150 mL size with three inlets : a temperature measurement, a sample inlet, and a collection tube connector. We changed the UV lamp used from a 450 W halogen lamp to a 100 W LED, which has a lower temperature and is safer. As a result of the experiment, CO2 bubbles were generated in the collection tube, due to the UV irradiation react, which uses oxidizer and catalysts. The maximum temperature of the solution irradiated with the LED UV lamp was less than 56°C. It confirmed the rate of bubble generation changed depending on the lamp distance, the amount of sample, oxidizer, and catalyst. In an experiment to confirm the reaction caused by heat, it was found that although a reaction occurred due to heat, the reaction was significantly lower than when using a UV lamp. The reproducibility experiment was conducted three times in total under the same conditions. It showed the same pattern. In the future, we plan to select mock samples, collect 14CO2 in Carbo- Sorb, and analyze them using LSC. The results of this research will be used as a technology to recover C-14 more safely and efficiently and will also be used to expand its application to the treatment of other wastes such as waste liquid and waste resin through simulated samples.
        154.
        2023.11 구독 인증기관·개인회원 무료
        Molten Salt Reactor (MSR) is one of the 4th generation nuclear power systems which is its verified technology in physically and chemically. Among the various salts used for MSR system, the eutectic composition of NaCl-MgCl2 system maintains the liquid state at around 450°C, in the same time, it has high solubility for nuclear fuel chlorides. This characteristic has high advantage for lowering the operating temperature for the MSR, which could reduce the problem of hightemperature corrosion by salt for structural materials significantly. In particular, since MgCl2 has the similar standard reduction potential with nuclear fuel, is used as a surrogate for, many basic researches have been conducted for verifying characteristic of MgCl2. It is well-known that main short-advantage of MgCl2 is hygroscopic properties. MgCl2 changes to MgCl2-xH2O state easily by absorbing moisture in air condition. The hydrated MgCl2 is producing MgOHCl by thermally decomposing at high temperature, the formed MgOHCl corrodes structural materials, even small amount of MgOHCl gives significant damage. Therefore, the purification of MgCl2 has been required for long-term operation of MSR using MgCl2 as a base salt. In this study, the purification of eutectic composition salt for NaCl-MgCl2 has been mainly performed by considering its thermodynamic properties and electrochemical characteristic, and the experimental results have been discussed.
        155.
        2023.11 구독 인증기관·개인회원 무료
        In this study, we introduce the validation of the analysis guidelines through preliminary experiments of the draft analysis guidelines before analyzing waste materials (non-combustible). This validation data was applied the accuracy and efficiency of the separation and analysis for the waste such as steel generated from NPP. Steel (non-flammable) was leached the mixed acid and the leaching solution was separated by using the separation guidelines. Steel was corroded with radioactive RM (Co-60, Cs-137) and mixed acid. After drying, the corroded steel was measured the initial radioactivity by a HPGe detector (10,000 seconds). The sample was inserted in a beaker and leached with mixed acid (10 M HNO3 + 4 M HCl) for 2 hours. In this solution, it added 2 ml of H2O2 to increase the leaching effect. The ultrasonic device was adjusted so that the temperature does not exceed 60°C. After elution, the surface of the sample was washed with pure water. The weight of the sample was measured accurately, and recorded the weight loss rate after infiltration. The leaching sample was measured radioactivity by a HPGe detector (10,000 seconds). It was calculated the recovery rate based on the difference in total radioactivity before and after leaching. Before the test, radioactive RM (Co-60, Cs-137) was radioactive deposited by corrosion, but Cs- 137 was not detected in the initial gamma measurement and only Co-60 nuclides were deposited. The recovery rate test results were confirmed to be about 100%.
        156.
        2023.11 구독 인증기관·개인회원 무료
        In the decommissioning process of nuclear power plants, Ni-59, Ni-63 and Fe-55 present in radioactive waste are crucial radionuclides used as fundamental indicators in determining waste treatment methods. However, due to their low-energy emissions, the chemical separation of these two radionuclides is essential compared to others. Therefore, this study aims to evaluate the suitability of various pre-treatment methods for decommissioning waste materials by conducting characteristic assessments at each chemical separation stage. The goal is to find the most optimized pre-treatment method for the analysis of Ni-59, Ni-63 and Fe-55 in decommissioning waste. The comparative evaluation results confirm that the chemical separation procedures for Fe and Ni are very stable in terms of stepwise recovery rates and the removal of interfering radionuclides. However, decommissioning waste materials, which mainly consist of concrete, metals, etc., possess unique properties, and a significant portion may be low-radioactivity waste suitable for on-site disposal. Considering that the chemical behavior and reaction characteristics may vary at each chemical separation stage depending on the matrix properties of the materials, it is considered necessary to apply cascading chemical separation or develop and apply individual chemical separation methods. This should be done by verifying and validating their effectiveness on actual decommissioning waste materials.
        157.
        2023.11 구독 인증기관·개인회원 무료
        In Korea, extensive industry-academia-research research has already established many facilities and technologies for materials and chemical experiments on non-radioactive substances. However, few facilities have been built to analyze the physical and chemical properties of substances irradiated through neutron irradiation. Korea is planning to decommission Kori-1 and Wolsong-1 in 2027. Extensive analysis of low-level and intermediate-level materials is required to begin decommissioning these nuclear power plants. The material’s composition and level can be identified by analyzing the structure’s characteristics, and a cutting and decontamination plan can be established based on this. In addition, by conducting a nuclide analysis on the waste generated after cutting, suitability for disposal can be secured, and stable treatment can be performed. Accordingly, the Korea Decommissioning Research Institute (KRID) plans to secure infrastructure (hot cells) to analyze the characteristics of intermediate-level decommissioning waste. The goal is to secure high-dose/high-radiation decommissioning waste processing technology through Korea’s first intermediate-level hot cell, support domestic nuclear power plant decommissioning projects, and secure and verify procedures related to nuclide analysis of intermediate-level using hot cells. In addition, by possessing these material properties and nuclide analysis technology, KRID can have a foundation to conduct continuous research on low- and intermediate-level radioactive materials and decommissioning. The purpose of KRID’s establishment is to use this foundation in the future to improve the technological level of the nuclear industry as a whole through linkage between industry, academia, and research institutes.
        158.
        2023.11 구독 인증기관·개인회원 무료
        During the initial cooling period of spent nuclear fuel, Cs-137 and Sr-90 constitute a large portion of the total decay heat. Therefore, separating cesium and strontium from spent nuclear fuel can significantly decrease decay heat and facilitate disposition. This study presents analytical technique based on the gas pressurized extraction chromatography (GPEC) system with cation exchange resin for the separation of Sr, Cs, and Ba. GPEC is a micro-scaled column chromatography system that allows for faster separation and reduction volume of elution solvent compared to conventional column chromatography by utilizing pressurized nitrogen gas. Here, we demonstrate the comparative study of the conventional column chromatography and the GPEC method. Cation exchange resin AG 50W-X12 (200~400 mesh size) was used. The sample was prepared at a 0.8 M hydrochloric acid solution and gradient elution was applied. In this case, we used the natural isotopes 88Sr, 133Cs, and 138Ba instead of radioactive isotopes for the preliminary test. Usually, cesium is difficult to measure with ICP-OES, because its wavelengths (455.531 nm and 459.320 nm) are less sensitive. So, we used ICP-MS to determine the identification and the recovery of eluate. In this study, optimized experimental conditions and analytical result including reproducibility of the recovery, total analysis time and volume of eluents will be discussed by comparing GPEC and conventional column chromatography.
        159.
        2023.11 구독 인증기관·개인회원 무료
        The nuclear fuel that melted during the Fukushima nuclear accident in 2011 is still being cooled by water. In this process, contaminated water containing radioactive substances such as cesium and strontium is generated. The total amount of radioactive pollutants released by the natural environment due to the nuclear accident in Fukushima in 2011 is estimated to be 900 PBq, of which 10 to 37 PBq for cesium. Radioactive cesium (137Cs) is a potassium analog that exists in the water in the form of cations with similar daytime behavior and a small hydration radius and is recognized as a radioactive nuclide that has the greatest impact on the environment due to its long half-life (about 30 years), high solubility and diffusion coefficient, and gamma-ray emission. In this study, alginate beads were designed using Prussian blue, known as a material that selectively adsorbs cesium for removal and detection of cesium. To confirm the adsorption performance of the produced Prussian blue, immersion experiments were conducted using Cs standard solution, and MCNP simulations were performed by modeling 1L reservoir to conduct experiments using radioactive Cs in the future. An adsorption experiment was conducted with water containing standard cesium solution using alginate beads impregnated with Prussian blue. The adsorption experiment tested how much cesium of the same concentration was adsorbed over time. As a result, it was found that Prussian blue beads removed about 80% of cesium within 10-15 minutes. In addition, MCNP simulation was performed using a 1 L reservoir and a 3inch NaI detector to optimize the amount of Prussian blue. The results of comparing the efficiency according to the Prussian volume was shown. It showed that our designed system holds great promise for the cleanup and detection of radioactive cesium contaminated seawater around nuclear plants and/or after nuclear accidents. Thus, this work is expected to provide insights into the fundamental MCNP simulation based optimization of Prussian blue for cesium removal and this work based MCNP simulation will pave the way for various practical applications.
        160.
        2023.11 구독 인증기관·개인회원 무료
        Copper hexacyanoferrate (Cu-HCF), which is a type of Prussian Blue analogue (PBA), possesses a specific lattice structure that allows it to selectively and effectively adsorb cesium with a high capacity. However, its powdery form presents difficulties in terms of recovery when introduced into aqueous environments, and its dispersion in water has the potential to impede sunlight penetration, possibly affecting aquatic ecosystems. To address this, sponge-type aluminum oxide, referred to as alumina foam (AF), was employed as a supporting material. The synthesis was achieved through a dip-coating method, involving the coating of aluminum oxide foam with copper oxide, followed by a reaction with potassium hexacyanoferrate (KHCF), resulting in the in-situ formation of Cu-HCF. Notably, Copper oxide remained chemically stable, which led to the application of 1, 3, 5-benzenetricarboxylic acid (H3BTC) to facilitate its conversion into Cu-HCF. This was necessary to ensure the proper transformation of copper oxide into Cu-HCF on the AF in the presence of KHCF. The synthesis of Cu-HCF from copper oxide using H3BTC was verified through X-ray diffraction (XRD) analysis. The manufactured adsorbent material, referred to as AF@CuHCF, was characterized using Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These analyses revealed the presence of the characteristic C≡N bond at 2,100 cm-1, confirming the existence of Cu-HCF within the AF@CuHCF, accounting for approximately 3.24% of its composition. AF@CuHCF exhibited a maximum adsorption capacity of 34.74 mg/g and demonstrated selective cesium adsorption even in the presence of competing ions such as Na+, K+, Mg2+, and Ca2+. Consequently, AF@CuHCF effectively validated its capabilities to selectively and efficiently adsorb cesium from Cs-contaminating wastewater.