검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9,279

        161.
        2023.11 구독 인증기관·개인회원 무료
        The mobility of radionuclides in the subsurface environment is governed by a interaction of radioactivity characteristics and geochemical conditions with adsorption reactions playing a critical role. This study investigates the characteristics and mechanisms of radionuclides adsorption on site media in viewpoint of nuclear safety, particularly focusing on the potential effect of seawater infiltration in coastal site near nuclear power plant. Seawater intrusion alters the chemistry in groundwater, including parameters such as pH, redox potential, and ionic strength, thereby affecting the behavior of radionuclides. To assess the safety of site near nuclear power plant and the environmental implications of nuclide leakage, this research conducted various experiments to evaluate the behavior of radionuclides in the subsurface environment. High distribution coefficients (50-2,500 ml/g) were observed at 10 mg/L Co, with montmorillonite > hydrobiotite > illite > kaolinite. It decreased with competing cations (Ca2+) and was found to decrease significantly by 90% with a decrease in pH to 4. It is believed that the adsorption capacity of cationic radionuclides decreases significantly as the clay mineral surface becomes less negatively charged. For Cs, the distribution coefficient (180-560 ml/g) was higher for montmorillonite > hydrobiotite > illite > kaolinite. Compared to Co, it was found to be less influenced by pH and more influenced by competing cations. For Sr, the distribution coefficient (100-380 ml/g) was higher in the order of hydrobiotite > montmorillonite > illite > kaolinite. Compared to Cs, it was found to be less affected by pH and also less affected by the effect of competing cations compared to Cs. Seawater samples from Gampo and Uljin site near Nuclear Power Plant in Korea were analyzed to determine their chemical composition, which was subsequently used in adsorption experiments. Additionally, the seawater-infiltrated groundwater was synthesized in laboratory according to previous literature. The study focused on the adsorption and behavior of three key radionuclides such as cesium, strontium, and cobalt onto four low permeability media (clay minerals) such as kaolinite, illite, hydrobiotite, and montmorillonite known for their high adsorption capacity at a site of nuclear power plant. At concentrations of 5 and 10 mg/L, the adsorption coefficients followed the order of cobalt > cesium > strontium for each radionuclide. Notably, the distribution coefficient (Kd) values exhibited higher values in seawater-infiltrated groundwater environments compared to seawater with relatively high ionic strength. Cobalt exhibited a substantial adsorption coefficient, with a marked decrease in Kd values in seawater conditions due to elevated ionic strength. In contrast, cesium displayed less dependency on seawater compared to other radionuclides, suggesting distinct adsorption mechanisms, possibly involving fractured edge sites (FES) in clay. Strontium exhibited a significant reduction in adsorption in seawater compared to groundwater in all Kd sorption experiments. The adsorption data of cobalt, cesium, and strontium on clay minerals in contact with seawater and seawater-infiltrated solutions offer valuable insights for assessing radioactive contamination of groundwater beneath coastal site near nuclear power plant sites. This research provides a foundation for enhancing the safety assessment protocols of nuclear power plant sites, considering the potential effects of seawater infiltration on radionuclide behavior in the subsurface environment.
        162.
        2023.11 구독 인증기관·개인회원 무료
        The operation of nuclear facilities involves the potential for on-site contamination of soil, primarily resulting from pipe leaks and other operational incidents. Globally, decommissioning process for commercial nuclear power plants have revealed huge-amounts of soil waste contaminated with Cs-137, Sr-90, Co-60, and H-3. For example, Connecticut Yankee in the United States produced approximately 52,800 ton of contaminated soil waste, constituting 10% of the total waste generated during its decommissioning. Environmental remediation costs associated with nuclear decommissioning in the US averaged $60 million per unit, representing a significant 10% of the whole decommissioning expenses. Consequently, this study undertook a preliminary investigation to identify important factors for establishing a site remediation strategy based on radionuclide- and site-specific media- characteristics, focusing the efficiency enhancement for the environmental remediation. The factors considered for this investigation were categorized into physical/environmental, socioeconomic, technical, and management aspects. Physical/environmental factors contained the site characteristics, contamination levels, and environmental sensitivity, while socio-economic factors included the social concerns and economic costs. Technical and management factors included subcategories such as technical considerations, policy aspects, and management factors. Especially, technical factors were further subdivided to consider the site reuse potential, secondary waste generation by site remediation, remediation efficiency, and remediation time. Additionally, our study focused the key factors that facilitate the systematic planning for the site remediation, considering the distribution coefficient (Kd) and hydrogeological characteristics associated with each radionuclide in specific site conditions. Therefore, key factors in this study focus the geochemical characteristics of site media including the particle size distribution, chemical composition, organic and inorganic constituents, and soil moisture content. Moreover, the adsorption properties of site media were examined concerning the distribution coefficient (Kd) of radionuclides and their migration characteristics. Furthermore, this study supported the development of a conceptual framework, containing the remediation strategies that incorporate the mobility of radionuclides, according to the site-specific media. This conceptual framework would necessitate the spatial analysis techniques involving the whole contamination surveys and radionuclide mobility modeling data. By integrating these key factors, the study provides the selection and simulation of optimal remediation methods, ultimately offering the estimated amounts of radioactive waste and its disposal costs. Therefore, these key factors offer foundational insights for designing the site remediation strategies according the sitespecific information such as the distribution coefficient (Kd) and hydrogeological characteristics.
        163.
        2023.11 구독 인증기관·개인회원 무료
        The physicochemical similarities of hydrogen isotopes have made their separation a challenging task. Conventional methods such as cryogenic distillation, Girdler sulfide process, chromatography, and thermal cycling absorption have low separation factors and are energy-intensive. To overcome these limitations, research has focused on kinetic quantum sieving (KQS) and chemical affinity quantum sieving (CAQS) effects for selective separation of hydrogen isotopes. Porous materials such as metal-organic frameworks (MOF), covalent organic frameworks (COF), zeolites, carbon, and organic cages have been studied for hydrogen separation. In this study, we focus the enhancement for CAQS to provide the cations due to the chemical affinity between hydrogen isotope and unsaturated sites by cations in zeolite beads. Cation exchanged zeolite beads was synthesized with cobalt, copper, nickel, iron and silver in zeolite 4A beads. Synthesized cation exchanged zeolite was analyzed for the surface area and pore size in N2 and adsorption behaviors of hydrogen isotopes (D2/H2) for various cation exchanged zeolite beads using BET at 77 K. The study predicts the D2/H2 adsorption selectivity based on the results obtained with BET. These hydrogen isotope adsorption results will provide a foundation for future processes for tritium separation.
        164.
        2023.11 구독 인증기관·개인회원 무료
        Currently, Korea is planning to use various equipments and technologies for cutting, decontamination, compression, solidification, and packaging at decommissioning site of Kori unit 1 and Wolsung unit 1. In particular, Korea is considering to apply new technologies like inorganic acid decontamination, spent resion treatment technology not only to localize various decommissioning technology, but to meet the limit of 14,500 drums of the decommissioning waste per unit. However, before the techniques applied to decommissioning, it is necessary to demonstrate the effectiveness and the safety of the techniques. Because unlike the industrial fields, the failure of the decommissioning technique in nuclear power plants can cause the spread or leakage of radioactive materials. In the「Regulation on Technical Standards for Nuclear Reactor Facilities, Etc.」is stated that the licensee shall apply proven technology to decommissioning and if the licensee apply new technology, he must provide resonable evidence and prove its safety. In accordance with this approach, Nuclear Safety and Security Commission (NSSC) Notice No. 2021-24 can be applied to the decommissioning technology as one of a technical standard related with the demonstration of it. And it states 9 kinds of elements related to the radioactive waste management facilites and components like the management of radioactive effluents, prevention of contamination and overflow by radioactive materials, etc. But, they are mixed with the radioactive material considerations and industrial considerations, and these considerations are usually for the facilities, not equipments or techniques. On the other hand, in the IAEA Safety Standards Series No. WS-G-2.1 Section 6.15 to 6.20, it recommended to evaluate 12 considerations for the decontamination technique and 7 considerations for the dismantling techniques. The Decommissioning Guide in Germany recommends to consider 3 conditions for radiation protection of decontamination techniques and 4 conditions for dismantling techniques. Therefore, it is necessary to compare the safety requirements or recommendations related to the demonstration of decommissioning technology with the other countries to check there is something to learn from it.
        165.
        2023.11 구독 인증기관·개인회원 무료
        KHNP is conducting research to decommission Wolsong Unit 1 Calandria. Establishment of preparation and dismantlement processes, conceptual design of equipment and temporary radiation protection facilities, and waste management are being established. In particular, the ALARA plan is to be established by performing exposure dose evaluation for workers. This study aims to deal with the methodology of evaluating exposure dose based on the calandria dismantling process. The preparation process consists of bringing in and installing tooling and devices, and removing interference facilities to secure work space. The main source term for the preparation process is the calandria structure itself and crud of feeders. In the case of the dismantlement process, a structure with a shape that changes according to the process was modeled as a radiation source. It is intended to estimate the exposure dose by selecting the number of workers, time, and location required for each process in the radiation field evaluated according to the preparation and dismantlement process. In addition, it is also conducting an evaluation of the impact on dust generated by cutting operations and the human impact of C-14, H-3, which are specialized nuclides for heavy water reactors. KHNP is conducting an exposure dose evaluation based on a process based on the preparation and dismantlement process for decommissioning Calandria through computation code analysis. If additional worker protection measures are deemed necessary through dose evaluation according to this methodology, the process is improved to prepare for the dismantling of worker safety priorities.
        166.
        2023.11 구독 인증기관·개인회원 무료
        Kori Unit 1 nuclear power plant is a pressurized water reactor type with an output of 587 Mwe, which was permanently shut down on June 18, 2017. Currently, the final decommissioning plan (FDP) has been submitted and review is in progress. Once the FDP is approved, it is expected that dismantling will begin with the secondary system, and dismantling work on the primary system of Kori Unit 1 will begin after the spent nuclear fuel is taken out. It is expected that the space where the secondary system has been dismantled can be used as a temporary storage place, and the entire dismantling schedule is expected to proceed without delay. The main equipment of the secondary system is large and heavy. The rotating parts is connected to a single axis with a length of about 40 meters, and is complexly installed over three floors, making accessibility very difficult. A large pipe several kilometers long that supplies various fluids to the secondary system is installed hanging from the ceiling using a hanger between the main devices, and the outer diameter of the pipe is wrapped with insulation material to keep warm. In nuclear secondary system decommissioning, it is very important to check for radiation contamination, establish and implement countermeasures, and predict and manage safety and environmental risks that may occur when cutting and dismantling large heavy objects. So we plan to evaluate the radiation contamination characteristics of the secondary system using ISOCS (In- Situ Object Counting System) to check for possible radioactive contamination. According to the characteristics results, decommissioning plans and methods for safe dismantling by workers were studied. In addition, we conducted research on how to safely dismantle the secondary system in terms of industrial safety, such as asbestos, cutting and handling of heavy materials and so on. This study proposes a safe decommissioning method for various risks that may occur when dismantling the secondary system of Kori Unit 1 nuclear power plant.
        167.
        2023.11 구독 인증기관·개인회원 무료
        In nuclear power plant (NPP) decommissioning, ventilation and purification of the building atmosphere are important to create a working environment, ensure worker safety, and prevent the release of gaseous radioactive materials into the environment. The heating, ventilation, and air conditioning (HVAC) system of each building is maintained, modified, or newly installed. In this study, based on APR1400, operation strategies were presented in case of ventilation abnormalities in the reactor containment building (RCB), where highly radioactive particles and high dust are most frequently generated during NPP decommissioning. For research, it was assumed that the entire RCB atmospheric ventilation during decommissioning would use the RCB purge system of the existing NPP and perform continuous ventilation. Additionally, it is assumed that areas where high radiation particles and high dust occur locally, such as reactor containers or internal segments, are sealed with tents and purified using a HEFA filter of a temporary portable HVAC, and a exhaust flow path is connected to the discharge duct of the existing RCB purge system. The possibility of abnormal occurrence was largely divided into two cases. First, when large amounts of uncontrolled pollutants are released into the atmosphere inside the RCB, discharge to the environment is stopped manually or automatically by a modified engineered safety function activation signal (ESFAS). Afterwards, the RCB purge system should be operated in recirculation mode to sufficiently purify the RCB atmosphere with a HEPA filter. Second, when the first train of the low volume purge system is not running due to a failure, standby train should be operated. If both low volume purge trains fail, a high volume purge system is used. Intermittent purge operation is preferred due to large capacity during high volume purge operation. In cases where it is not possible to operate all purge systems due to common issues such as power supply, atmospheric sampling is performed to determine whether to proceed with the work inside RCB.
        168.
        2023.11 구독 인증기관·개인회원 무료
        When decommissioning of nuclear facilities happens, large amounts of radioactive wastes are released. Because costs of nuclear decommissioning are enormous, effective and economical decontamination technologies are needed to remove radioactive wastes. During NPP operation, corrosion product called Chalk River Unidentified Deposits (CRUD) is generated. CRUD is an accumulation of substances and corrosion products consisting of dissolved ions or solid particles such as Ni, Fe, and Co on the surface of the NPP fuel rod coating. CRUD is slowly eroded by the circulation of hot pressurized water and later deposits on the fuel rod cladding or external housing, thereby reducing heat production by the nuclear fuel. Decontamination of radiologically contaminated metals must be performed before disposal, and several methods for decontaminating CRUD are being studied in many countries. Decontamination technology is an alternative to reducing human body covering and reducing radioactive waste disposal costs, and much research and development has been conducted to date. Currently, the importance of decontamination is emerging as the amount of waste stored in radioactive waste storage is close to saturation, and the amount of radioactive waste generated must be minimized through active decontamination. In this study, a preliminary study was conducted on the removal of CRUD by multiple membrane in an electro-kinetic process using an electrochemicalbased decontamination method. Preliminary research to develop a technology to electrochemically remove CRUD by using a self-produced electrochemical cell to check the pH change over time of the CRUD cell according to voltage, electrolyte, membrane and pH change.
        169.
        2023.11 구독 인증기관·개인회원 무료
        The primary heat transport system consists mainly of the in-core fuel channels connected to the steam generators by a system of feeder pipes and headers. The feeders and headers are made of carbon steel. Feeders run vertically upwards from the fuel channels across the face of the reactor and horizontally over the refueling machine to the headers. Structural materials of the primary systems of nuclear power plants (NPPs) are exposed to high temperature and pressure conditions, so that the materials employed in these plants have to take into accounts a useful design life of at least 30 years. The corrosion products, mainly iron oxides, are generated from the carbon steel corrosion which is the main constituent of the feeder pipes and headers of this circuit. Typical film thickness on CANDU-PHWR surface is 75μm or 30mg/cm2. Deposits on PHWR tends to be much thicker than PWR due to use of carbon steel and also for the source of corrosion products available on the carbon steel surface. Degradation of carbon steel for the feeder pipes transferring the primary system coolant by flow-assisted corrosion in high temperature has been reported in CANDU reactors including Point Lapreau, Gentully-2, Darlington and Bruce NPPs. The formation of Fe3O4 film on a carbon steel surface reduces the dissolution rate of steel substantially. The protectiveness of the Fe3O4 film over the carbon steel is affected by the environmental factors and the operational parameters of the feeder pipes, including the velocity, wall shear stress, solution pH, temperature, concentration of dissolved iron, quality of solution, etc. For effective chemical decontamination of these thick oxides containing radionuclides such as Co-60, it is necessary to understand the corrosion behaviors of feeder pipes and the characteristics of oxide formed on it. In this work, we investigated the growth of oxide films that develop on type SA-107 Gr. B carbon steel in high temperature water and steam environment by scanning electron microscopy (SEM) and glow discharge optical emission spectrometry (GD-OES) for the quantification and the solidstate speciation of metal oxide films. This study was especially focused to set the experimental tests conditions how to increase the oxide thickness up to 50 m by changing the oxidation conditions, such as solution chemistry and thermo-hydraulic conditions both temperature and pressure and so on.
        170.
        2023.11 구독 인증기관·개인회원 무료
        The radiological characterization of SSCs (Structure, Systems and Components) plays one of the most important role for the decommissioning of KORI Unit-1 during the preparation periods. Generally, a regulatory body and laws relating to the decommissioning focus on the separation and appropriate disposal or storage of radiological waste including ILW (intermediate level waste), LLW (low level waste), VLLW (very low level waste) and CW (clearance waste), aligned with their contamination characteristics. The result of the preliminary radiological characterization of KORI Unit-1 indicated that, apart from neutron activated the RV (reactor vessel), RVI (reactor vessel internals), and BS (biological shielding concrete), the majorities of contamination were sorted to be less than LLW. Radiological contamination can be evaluated into two methods. Due to the difficulties of directly measuring contamination on the interior surfaces of the pipe, called CRUD, the assessment was implemented by modeling method, that is measuring contamination on the exterior surfaces of the pipes and calculating relative factors such as thickness and size. This indirect method may be affected by the surrounding radiation distribution, and only a few gamma nuclides can be measured. Therefore, it has limitation in terms of providing detailed nuclide information. Especially, α and β nuclides can only be estimated roughly by scaling factors, comparing their relative ratios with the existing gamma results. To overcome the limitation of indirect measurement, a destructive sampling method has been employed to assess the contamination of the systems and component. Samples are physically taken some parts of the systems or components and subsequently analyzed in the laboratory to evaluate detailed nuclides and total contamination. For the characterization of KORI Unit-1, we conducted the radiation measurement on the exterior surfaces of components using portable instruments (Eberline E-600 SPA3, Thermo G20-10, Thermo G10, Thermo FH40TG) at BR (boron recycle system) and SP (containment spray system) in primary system. Based on these results, the ProUCL program was employed to determine the destructive sample collection quantities based on statistical approach. The total of 5 and 8 destructive sample quantities were decided by program and successfully collected from the BR and SP systems, respectively. Samples were moved to laboratory and analyzed for the detail nuclide characteristics. The outcomes of this study are expected to serve as valuable information for estimating the types and quantities of radiological waste generated by decommissioning of KORI Unit-1.
        171.
        2023.11 구독 인증기관·개인회원 무료
        Korea Atomic Energy Research Institute (KAERI) has been operating the Post Irradiation Examination Facility (PIEF) for fuel examinations. The facility has pools and hot cells for handling and examining fuel assemblies and rods. Among the hot cells, the second cell is for measuring rod internal pressure (RIP) and then cutting the rod to make samples for destructive tests. Currently, the cutting machine is broken, so it has to be replaced. Because the existing cutting machine consists of many parts and its size was quite a bit large to handle and treat for the radioactive waste disposal, the disassembly work has been performed to make it smaller using manipulators. The drawings of the cutting machine were reviewed and the disassembly tools were developed considering workability when the work performed at the hot cell using the manipulators. The large parts such as motor, mirror and cable, etc., were able to be disassembled and the machine size became so smaller that it could be easily handled for the disposal.
        172.
        2023.11 구독 인증기관·개인회원 무료
        It is crucial to be sure about the safety of nuclear facilities for human resources who are in danger of radioactive emission, also diminishing the volume of the wastes that are buried under the ground. Chemical decontamination of nuclear facilities can provide these demands at the same time by dissolving the oxide layer, which radionuclides such as 60Co and 58Co have been penetrated, of parts that are utilized in nuclear plants. Although there are many commercial methods to approaching its aim and they perform a high decontamination factor, they have some issues such as applying organic acids which have the ability to chelate with radionuclides that can be washed by underground water, have large quantities of radioactive waste and damage to the surface by severe intergranular attack. A new method has been introduced by KAERI’s scientist which is named the HyBRID Process, in this process the main solution is the acidic form of Hydrazine. In this process, like other acid-washing processes, there is a chance of corrosion on the metal surface which is not desired. The metal surface is able to be protected during dissolving process by adding some organic and inorganic corrosion inhibitors such as PP2 and PP3. There is a very new research topic about ionic liquids (ILs) as corrosion inhibitors which illustrates a vast potential for this application due to their tunable nature and the variety of options for cationic and anionic parts. The key factors for ILs corrosion inhibitors such as the hardness properties are summarized. In this study, we review to the fundamentals and development of corrosion inhibitors for chemical decontamination and give an prospect with emphasis on the challenges to be overcome.
        173.
        2023.11 구독 인증기관·개인회원 무료
        The radiation field generated in the primary cooling system of a nuclear power plant tends to increase in intensity as radionuclides bind to the oxide film on the internal surface of the primary system, which is operated at high temperature and pressure, and as the number of years of operation increases. Therefore, decontamination of the primary cooling system to reduce worker exposure and prevent the spread of contamination during maintenance and decommissioning of nuclear power plants uses the principle of simultaneous elution of radionuclides when the corrosion oxide film dissolves. In general, a multi-stage chemical decontamination process is applied, taking into account the spinel structure of the corrosion oxide film formed on the surface of the primary cooling system, i.e. an oxidative decontamination step is applied first, followed by a reductive decontamination step, which is repeated several times to reach the desired decontamination goal. Currently, permanganic acid is commonly used in oxidative decontamination processes to remove Cr from corrosion oxide films. In the reductive decontamination step to remove iron and nickel, organic acids such as oxalic acid are commonly used. However, organic acids are not suitable for the final radioactive waste form. A number of multi-stage chemical decontamination technologies for primary cooling systems have been developed and commercialized, including NP-CITROX, AP/NP-CANDECON, CANDERM, AP/NP-LOMI and HP/CORD-UV. Among these, HP/CORDUV is currently the most actively applied primary cooling system chemical desalination process in the world. In this study, KAERI has developed a new chemical decontamination technology that does not contain organic chemical decontamination agents, with a focus on securing an original technology for reducing the amount of decontamination waste while having equivalent or better decontamination performance than overseas commercial technologies, and compared it with the inorganic chemical agent-based HyBRID (Hydrazine Based Reductive Metal Ion Decontamination) chemical decontamination technology.
        174.
        2023.11 구독 인증기관·개인회원 무료
        There are analytical methods used for measuring activity when light photons are emitted for scintillating-based analytical application. When this electron returns to the original stable state, it releases its energy in the form of light emission (visible light or ultraviolet light), and this phenomenon is called scintillation. Scintillator is a general term for substances that emit fluorescence when exposed to radiation such as gamma-rays. Radioactivity is all around us and is unavoidable because of the ubiquitous existence of background radiations emitted by different sources. The scintillator contributes to these sensing, and it is expected that the inspection accuracy and limit of detection will be improved and new inspection methods will be developed in the future. Moreover, scintillators are chemical or nanomaterial sensors that can be used to detect the presence of chemical species and elements or monitor physical parameters on the nanoscale. In this study, it includes finding use in scintillating-based analytical sensing applications. A chemical and nanomaterial based sensors are self-contained analytical tools that could provide information about the chemical compositions or elements of their environment, that is, a liquid or even gas condition. Herein, we present an insightful review of previously reported research in the development of high-performance gamma scintillators. The major performance-limiting factors of scintillation are summed up here. Moreover, the 2D material has been discussed in the context of these parameters. It will help in designing a prototype nanomaterial based scintillators for radiation detection of gamma-ray.
        175.
        2023.11 구독 인증기관·개인회원 무료
        Chelate resin is a resin that has an exchange group which can form chelates with various metal ions. It shows higher selectivity for metal ions than ion exchange resin and can selectively remove characteristic metal ions. In an aqueous solution containing metal ions, chelate resin can adsorb specific metal ions, and the separated chelate resin can desorb the adsorbed metal ions by changing temperature or pH, so chelate resin has the advantage of being reusable. Chelate resin has been used industrially as an adsorbent to adsorb and separate heavy metal ions in wastewater, and is also used for the purpose of recovering precious or rare metals contained in industrial wastewater or industrial waste. Against this background, there is a need to develop chelate resins with higher adsorption capacity. Acrylic fiber is defined as a man-made fiber made from a linear synthetic polymer with fiberforming ability consisting of more than 85% acrylonitrile. It is a man-made fiber that is often used as a substitute for wool because it has good thermal insulation properties like wool and is warm and soft to the touch. It is a fiber rich in cyano groups due to its high content of acrylonitrile, and has the advantage of being able to be used as a variety of functional fibers through modification of cyano groups. In this study, the amination reaction of acrylic fiber was performed using diethylenetriamine, and the adsorption characteristics for metal ions were evaluated according to the reaction conversion rate. In order to improve the amination efficiency, 400 kGy was irradiated using a 2.5 MeV electron beam accelerator, and through this, the crosslinking rate of acrylic fiber was able to be improved up to 80%. Water and ethanol were used as cosolvents for the amination reaction in a ratio of 60/40 vol/vol, respectively, and a reaction yield of 178% was obtained after 120 minutes of reaction. Using the chelate resin prepared in this way, the adsorption performance for metal ions was evaluated through Atomic Absorption Spectrometry analysis.
        176.
        2023.11 구독 인증기관·개인회원 무료
        Radioactive contamination distribution in nuclear facilities is typically measured and analyzed using radiation sensors. Since generally used detection sensors have relatively high efficiency, it is difficult to apply them to a high radiation field. Therefore, shielding/collimators and small size detectors are typically used. Nevertheless, problems of pulse accumulation and dead time still remain. This can cause measurement errors and distort the energy spectrum. In this study, this problem was confirmed through experiments, and signal pile-up and dead time correction studies were performed. A detection system combining a GAGG sensor and SiPM with a size of 10 mm × 10 mm × 10 mm was used, and GAGG radiation characteristics were evaluated for each radiation dose (0.001~57 mSv/h). As a result, efficiency increased as the dose increased, but the energy spectrum tended to shift to the left. At a radiation dose intensity of 400 Ci (14.8 TBq), a collimator was additionally installed, but efficiency decreased and the spectrum was distorted. It was analyzed that signal loss occurred when more than 1 million particles were incident on the detector. In this high-radioactivity area, quantitative analysis is likely to be difficult due to spectral distortion, and this needs to be supplemented through a correction algorithm. In recent research cases, the development of correction algorithms using MCNP and AI is being actively carried out around the world, and more than 98% of the signals have been corrected and the spectrum has been restored. Nevertheless, the artificial intelligence (AI) results were based on only 2-3 overlapping pulse data and did not consider the effect of noise, so they did not solve realistic problems. Additional research is needed. In the future, we plan to conduct signal correction research using ≈10×10 mm small size detectors (GAGG, CZT etc.). Also, the performance evaluation of the measurement/analysis system is intended to be performed in an environment similar to the high radiation field of an actual nuclear facility.
        177.
        2023.11 구독 인증기관·개인회원 무료
        Despite its advantages such as safety, unnecessary pretreatment, and decontamination of waste with complex geometry, conventional ultrasonic decontamination technology has been only used to remove loose contaminants, oil and grease, not fixed contaminants due to the limitations in increasing the intensity in the high frequency range. Thus, ultrasound has been used as an auxiliary method to accelerate chemical decontamination of radioactive wastes or chemicals were added to the solution to increase the decontamination efficiency. The recently developed high-intensity focused ultrasound (HIFU) decontamination technology overcomes these limitations by combining multiple frequencies of ultrasonic waves in a specific arrangement, making it possible to remove most fixed contaminants, including radioactive micro particles less than 1 micrometer within half an hour. KEPCO NF and EnesG developed mobile HIFU decontamination equipment and successfully demonstrated the decontamination effect on various radionuclides found in nuclear power plants by treating radioactive metal waste to the level below free release criteria. The mobile HIFU decontamination equipment used in the demonstration can be operated anywhere where water is supplied, including controlled area in nuclear power plants, and is expected to be used widely for decontamination and free release of metal radioactive wastes.
        178.
        2023.11 구독 인증기관·개인회원 무료
        In all geodisposal scenarios it is key to understand the interaction of radionuclides with mineral particles during their formation/recrystallisation. Studying processes at the molecular scale provides insight into long-term radionuclide behaviour. Uranium is a significant radionuclide in higher activity wastes destined for geological disposal, and iron (oxyhydr) oxides (e.g. goethite, 􀟙-FeOOH). are ubiquitous in and around these systems, formed via processes including metal corrosion and microbially induced reactions. There are numerous reports of uranium-incorporation into iron (oxyhydr) oxides, therefore it has been suggested that they may be a barrier to uranium migration in geodisposal systems. However, long-term stability of these phases during environmental perturbations are unexplored. Specifically, U-incorporated iron (oxyhydr) oxide phases may interact with Fe(II) and sulphide from biological or geological origin. Firstly, electron transfer occurs between adsorbed Fe(II) and iron oxyhydroxides, with potential for changes in the speciation of incorporated uranium e.g. oxidation state changes and/or release. Secondly, on exposure to aqueous sulfide, iron (oxyhydr) oxides undergo reductive dissolution and recrystallisation to iron sulphides. Understanding the fate of incorporated uranium during these process in key to understanding its long term behaviour in subsurface systems. A series of experimental studies were undertaken where U(VI)-goethite was synthesized then reacted with either aqueous Fe(II) or S(-II), and the system monitored over time using geochemical analysis and X-ray absorption spectroscopy (XAS) techniques e.g. U LIII-edge and MIV-edge HERFD-XANES. Reaction with aqueous Fe(II) resulted in electron transfer between Fe(II) and U(VI)-goethite, with > 50% U(VI) reduced to U(V). XAS analysis revealed that U remained within the goethite structure, and electron transfer only occurred within the outermost atomic layers of goethite. which led to U reduction. Rapid reductive dissolution of U(VI)-goethite occurred on reaction with sulfide at pH7. A transient release of aqueous U was observed during the first day, likely due to uranyl(VI)-persulfide species. However, U was retained in the solid phase in the longer term. In contrast, the sulfidation of U adsorbed to ferrihydrite at pH 12.2 led to the immediate release of U (< 10% Utotal) associated with a colloidal erdite (NaFeS2·2H2O) phase. Moreover, in the bulk phase the surface of ferrihydrite was passivated by sulfide, and U was found to have been trapped within surface associated erdite-like fibres. Overall, these studies further understanding of the long-term behaviour of U-incorporated iron (oxyhydr)oxides supporting the overarching concept of iron (oxyhydr) oxides acting as a barrier to U migration.
        179.
        2023.11 구독 인증기관·개인회원 무료
        KORAD (Korea Radioactive Waste Agency, http://www.korad.or.kr) has stored slightly contaminated ascon (asphalt coated concrete mixture) that was introduced to Gyeongju repository about a decade ago waiting for a final disposal. It is believed to be mainly contaminated by radioisotope 137Cs due to impurities introduced from the outside during the ascon manufacturing process. We studied characteristics of the radioactive waste to see whether this material would be proper enough to be disposed in Gyeongju LILW repository or be other ways to reduce the disposal volume including self-disposal before its final disposal otherwise. KORAD looked into the properness of characteristics of ascon in terms of WAC (Waste Acceptance Criteria) documented by KORAD that includes general chemical and physical properties of asphalt, density, size of grains, content of organic material and possibility of existence of chelate materials that qualitatively limited to be disposed by the criteria. And other associated characteristics such as gas generation and bio degradation were also investigated. Based on the data obtained from the study, we proposed various plausible solutions in associated with operational and disposal safety and economic view points. This study will be used for KORAD’s decision on how to control and safely dispose the spent ascon within a reasonable time period. And also those experiences may be applied for other LILW issues that require treatment or conditioning of radioactive wastes in the future.
        180.
        2023.11 구독 인증기관·개인회원 무료
        The presence of organic components in spent scintillation liquid should be considered during all steps of radioactive waste processing for final disposal. Scintillation liquids often referred to as cocktails are generated form radiochemical analyses of radionuclides, which mainly consists of mixtures of liquid organic materials such as toluene and xylene. Typical features of these liquid organic materials are volatility, combustibility and toxicity. These are the reason why special attention must be paid to the management of liquid organic radioactive wastes. To select an appropriate waste management strategy and to design the treatment process of spent scintillation cocktails, it is required to investigate the nature of the waste such as specific radioactivity and moisture content. The analysis results of spent scintillation liquid generated at Wolsong nuclear power plants will be discussed. An overview of the technical approaches available for the treatment of organic radioactive waste will be additionally provided.