Opuntia ficus-indica (OFI), or Pricky Pear Cactus, is effective in cough, fever, pain and anti-inflammatory action, and asthma. This study aims to investigate the effect of OFI stem extract on the respiratory system of animal models induced by ovalbumin (OVA) and fine dust (PM10) and to analyze the indicator substances of OFI stem extract. In the OFI stem 50% ethanol extract (OFI-50E) administration group, the number of immune cells and inflammatory cytokines in the lungs and BAL decreased to a similar level to the positive control group administered with dexamethasone. In addition, OVA-specific IgE and airway hyper-reactivity (AHR) were significantly reduced. Also, the deposition of PM10 observed through staining of lung tissue was clearly reduced in the OFI-50E 200 mg/kg administration group. The anti-inflammatory mechanism in the lung was found to obstruct the production of inflammatory cytokines by impeding the NF-kB and MAPK pathways through the inhibition of IRAK-1 active cells. The main component of OFI stem 50% ethanol extract was identified to be narcissin. According to the study results, OFI is expected to be a respiratory health functional food.
Background: Small particles increase airway inflammation upon reaching the alveoli. Here, we investigated the protective or therapeutic
effects of Salvia plebeia R. Br. (SP_R) extracts on airway inflammation.
Methods and Results: To investigate the anti-inflammatory activity of SP_R extracts, we measured their inhibitory effect on the
production of reactive oxygen species (ROS) expression of inflammatory mediators, and immune cell infiltration in MH-S alveolar
macrophage cells and in the ambient particulate matter (APM)-exposed airway inflammation mice model. The SP_R extracts inhibited
the production of ROS and expression of IL-4, IL-10, IL-15, and IL-17A mRNA in APM-stimulated MH-S cells. Oral administration
of SP_R extracts suppressed APM-induced inflammatory symptoms, such as high alveolar wall thickness, excess collagen
fibers, decreased mRNA expression of chemokines (Ccr9, Ccl5, Ccr3), inflammatory cytokines (IL-15, TNF-α), and IL-4 Th2 cytokine
in the lung. The SP_R extracts also inhibited ROS production, granulocyte (CD11b+Gr-1+) infiltration, IL-17A, TNF-α, macrophage
inflammatory protein (Mip-2), and chemokine (C-X-C motif) ligand 1 (Cxcl-1) production in the airway. The specific
compounds in the SR-R extracts that mediate the anti-inflammatory effects were identified.
Conclusions: In this study, SP_R extracts effectively inhibited airway inflammatory responses, such as ROS production and granulocyte
infiltration into the airway, by regulating the expression of chemokines and inflammatory cytokines.
Background: Salvia has been widely cultivated for use in flavoring and folk medicines in many countries, including Korea and China. In this study, we investigated the anti-inflammatory activity and the underlying active compounds of Salvia extract and its fractions.Methods and Results: The anti-inflammatory activity was measured by assessing the inhibition of cysteinyl leukotriene production in rat basophilic leukemia (RBL)-2H3 mast cells. Salvia plebeia R. Br. was found to have the most potent inhibitory activity on leukotriene production than S. japonica and S. chanroenica had. Fifty percent ethanol extracts of S. plebeia R. Br. were successively partitioned with n-hexane, methylene chloride, ethyl acetate, 1-butanol and water. The ethyl acetate (EtOAc) fraction showed stronger anti-inflammatory activity than other solvent fractions did. The EtOAc fraction was subjected to silica gel column chromatography elution with a chloroform and methanol gradient system (100 : 1 → 1 : 1) yielding 10 fractions. Three kinds of fractions (chloroform:methanol = 20 : 1, 10 : 1 and 5 : 1) showed high inhibitory activity on leukotriene production. We confirmed the major compounds with anti-inflammatory activity from S. plebeia R. Br.Conclusions: In this study, the major components of S. plebeia that showed leukotriene production inhibitory activity were isolated using solvent extraction and silica gel column chromatography. Rosmarinic acid, hispidulin and luteolin were identified as the major compounds with anti-inflammatory effect.
The feature of asthma are airway inflammation (AI), reversible airway obstruction, and an increased sensitivity to bronchoconstricting agents, elevated airway hyperresponsiveness (AHR), excess production of Th2 cytokines, and eosinophil accumulation in the lungs. This study was performed to investigate if oral administration of Scutellaria baicalensis Georgi water extracts (SBG) have the antiasthmatic potential for the treatment of asthma. Asthmatic HI and AHR were induced by systemic sensitization to ovalbumin (OVA) with intratracheal instillation with 0.1 mg/mL of diesel exhaust particles (DEP) suspension once a week for 10 weeks in BALB/c mice. SBG was orally administered with the concentraion of 200 mg/kg 5 days a week for 10 weeks. Long-term SBG treatment suppressed the eosinophil infiltration into airways from blood, the asthmatic AI and AHR by attenuating the production of cytokine IL-4, IL-5 and IL-13, histamine and OVA-specific IgE. Our data suggest that SBG has inhibitory effects on AI and AHR in a mouse model of asthma, may act as a potential Th2 cytokine antagonist, and may have a therapeutic effect on allergic asthma.
The objective of this study was to investigate the effect of crude ginseng total saponins (CGS) against airway inflammation (AI) and airway hyperresponsiveness (AH) induced by diesel exhaust particles (DEP) in mice. AI and AH were induced by the intratracheal instillation with 0.1 mg/ml of DEP suspension once a week for 10 weeks combined with ovalbumin (OVA) sensitization. Mice were also treated orally with 75 mg/ml of CGS, 5 days a week for 10 weeks. Oral CGS treatment decreased in the level of serum immunoglobulin (IgE) and histamine increased by DEP and OVA, and declined respiratory resistance. It also dropped an enhanced infiltration of eosinophils in the bronchoalveolar lavage fluid (BALF) of mice, and an increased T helper type 2 cell derived cytokine levels such as of interleukin (IL)-4, IL-13 and IL-5 in the BALF. However, it did not influence T helper type 1 cytokine such as interferon-gamma in the BALF. These results indicate that CGS may alleviate allergen-related AI and AH in mice and may play an important role in the modulation of asthmatic inflammation.