The purpose of this study was to analyse factors related to Home Meal Replacement (HMR) use among university students and to determine the dietary quality according to its consumption. A survey on the consumption of HMR and Nutrition Quotient (NQ) was conducted from September to November 2021. The study included 232 university students (88 males, 144 females) from Chungcheong. The proportion of consumption at least once a week was 71.55% for ready-to-eat foods, 55.60% for ready-to-cook foods, 40.95% for fresh-cut products, and 21.12% for meal-kits. The preference ratings were as follows: ready-to-eat foods, 3.77 out of 5 points, meal-kits, 3.53 points, fresh-cut products, 3.52 points, and ready-to-cook foods, 3.45 points. In terms of satisfaction, convenience (4.06 out of 5 points), taste (3.71 points), variety (3.67 points), and food hygiene (3.62 points) were rated the highest. The scores in the moderation NQ were significantly lower in the groups that consumed ready-to-eat foods (p=0.0002), ready-to-cook foods (p=0.0002), and meal-kits (p=0.0068) at least once a week compared to the groups that consumed them less than once a week. In conclusion, the results will serve as basic data for nutrition education for proper consumption of HMR among university students.
Centella asiatica (C. asiatica) has been widely used in food, cosmetics, and pharmaceutical industry as a functional material. In a previous study, we have investigated not only pharmacological effects such as antioxidative and anti-inflammatory effects, but also analyzed various functional ingredients. In this study, triterpenoids were analyzed using HPLC-DAD to determine marker compounds among functional ingredients. When triterpenoids were analyzed, asiaticoside from C. asiatica was determined as an optimal marker compound. Next, specificity, linearity, limited of detection (LOD), limited of quantification (LOQ), precision, accuracy, and range were evaluated using HPLC-DAD to determine asiaticoside contents in C. asiatica juice and extracts. The specificity was elucidated by chromatogram and retention time using an established analytical method. The coefficient of correlation obtained was 0.9996. LOD was 4.99 μg/mL and LOQ was 15.12 μg/mL. Intra- and inter-day precision of asiaticoside were determined to be 0.48~1.68% and 0.08~1.09%, respectively. Furthermore, the recovery rate of asiaticoside was 98.88% and the analytical range of Field-70E was determined to be 0.625~10 mg/mL. As a results of evaluating ABTS, DPPH, and FRAP antioxidative effect, Field-70E showed potent antioxidant activities. Results of this study could be used as basic data for quality standardization of C. astiatica juice and extracts.
To enhance the bioavailability and bioactivities of mixed herbal medicines (RW), they were fermented with lactic-acid bacteria isolated from kimchi into postbiotics (FRW). Then, from the results of the 16s rRNA sequencing analysis, lactic acid bacteria isolated from kimchi were identified to be of two species, namely Lactobacillus sakei and Leuconostoc mesenteroides. The FRW prepared from the RW were extracted using hot water (HW) and 70% EtOH (EtOH) for comparison of their macrophage-stimulating activities. Based on a comparison of the activities of the FRW extracts, nitric oxide (NO) production of HW was significantly higher than that in EtOH. An analysis of the chemical properties of the extracts showed that HW had higher contents of neutral sugar and uronic acid than EtOH as well as contained a large amount of glucose. In addition, crude polysaccharide (CP) was prepared to enhance the macrophage-stimulating activity. The FRW-CP not only secreted immunostimulatory mediators but also increased the expression of immunostimulatory genes (iNOS, TNF-α, MCP-1, and IL-6). The fractionated FRW-CP contained about 90% neutral sugars, and these sugars were mainly composed of glucose, galacturonic acid, and arabinose. Thus, FRW prepared by fermentation of RW with kimchi lactic acid bacteria were found to be immunostimulatory modulators.
After liquid culture of Phellinus baumii (P. baumii) mycelium (LPBM) was prepared, LPBM was fractionated into A∼E fraction (A; hot-water extract of liquid culture including mycelia, B; crude polysaccharide of A, C; hot-water extract of mycelia, D; crude polysaccharide of C, and E; crude polysaccharide of culture broth) to evaluate for possibility as functional materials with immunostimulatory activity. In macrophage stimulatory activity, E fraction as postbiotics significantly increased secretion of NO and IL-12 from RAW 264.7 cells. Next, when the splenocytes of C3H/HeN mice were primary cultured, E fraction showed significantly mitogenic activity with enhancing mitogen-related cytokines (IFN-γ and TNF-α) production from splenocyte. E fraction also potently stimulated GM-CSF production from Peyer’s patch cells as well as Peyer’s patch-mediated bone marrow cell proliferation. In addition, the immunostimularoy E fraction contained neutral sugar (73.8%), uronic acid (10.6%), protein (7.8%), and polyphenol (7.5%), and mainly consisted of glucose (39.1%), galactose (21.7%), mannose (11.1%), galacturonic acid (9.9%), and arabinose (8.9%) as component sugars. In conclusion, it was demonstrated that postbiotics including exopolysaccharide fractionated from liquid culture of the P. baumii mycelium could enhanced immunostimulatory activity.