검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 88

        61.
        2005.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The copper oxide nano powders were synthesized by levitational gas condensation(LGC) method, and their high heterogeneous catalytic effects of oxidation of 2,3,5-trimethyl-1,4- hydroquinone (TMHQ) and catalase activity were studied. The observation of transmission electron microscopy (TEM) shows that most of these nano powders are uniform in size, with the average particle size of 35 nm. The nano powder consists of mainly , but it is aged to CuO phase. The catalytic effect which was clarified by oxidation of TMHQ and catalase depends on the amount of cuprite phase and the particle size.
        4,000원
        62.
        2005.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        nano cubes with high catalase activity were synthesized by reduction of freshly prepared Cu in distilled water at and their catalase activities of were studied. Transmission electron microscopy (TEM) observation showed that most of these nanocubes were uniform in size, with the average edge length of 30 nm. Selected area electron diffraction of TEM revealed that the nanocube consisted of single crystalline , but it changed to CuO phase. The catalase activity depends on the amount of both cuprite phase and surface area.
        4,000원
        63.
        2005.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nano Fe-6.5wt%Si powders have been synthesized by mechano-chemical process (MCP) for an application of soft magnetic core. Owing to hard and brittle characteristics of Fe-6.5Si nano powders having large surface area, it is very difficult to reach high density more than 70% of theoretical density (~7.4 g/) by cold compaction. To overcome such problem a magnetic pulsed compaction (MPC), which is one of dynamic compaction techniques, was applied. The green density was achieved about 78% (~5.8 g/) by MPC at room temperature.
        4,000원
        64.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Dispersion stabilities and photocatalytic activities of rutile powders with unique nano-structure synthesized by homogeneous precipitation process at low temperature(HPPLT) have been investigated in the acrylic resin containing fluorostyrene in the range of mole. Isoelectric point of in the acrylic resin placed in the neutral region whereas that of in the water placed in the acidic region, indicating that zeta potential and agglomeration of powder is strongly dependent on the pH and the type of solvent. To prepare an adhesion, an acrylic resin containing fluorostyrene was synthesized by a radical polymerization. The adhesion of coating layer was increased with increasing fluorostyrene's contents without changing the dispersion stabilities and degrading photocatalytic properties
        4,000원
        65.
        2004.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanoscale Cu-Ni alloy nanopowders have been produced by a pulsed wire evaporation method in an inert gas. The effect of Cu-Ni alloy nanopowders as additives to motor oil on the tribological properties was studied at room temperature. The worn surfaces were characterized by Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). Cu-Ni alloy nanopowders as additives lowered coefficient of friction and wear rate. It was found that a copper containing layer on the worn surface was formed, and deposited layers of the metal cladding acted as lubricant on the worn surface, reducing the friction coefficient. It was clearly demonstrated that Cu-Ni alloy nanopowders as additives are able to restore the worn surface and to preserve the friction surfaces from wear
        3,000원
        66.
        2004.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the study, a hybrid constitutive model for densification of metallic powders was applied to cold isostatic pressing. The model is based on a pressure-dependent plasticity model for porous materials combined with a dislocation density-based viscoplastic constitutive model considering microstructural features such as grain size and inter-particle spacing. Comparison of experiment and calculated results of microscale and nanoscale Cu powders was made. This theoretical approach is useful for powder densification analysis of various powder sizes, deformation routes and powder processing methods.
        4,000원
        67.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 아로마 처치를 학교 교육현장에 적용하여, 아동들의 발표불안에 긍정적인 영향을 미쳐 불안이 감소하는가를 규명하고자 하였다. 실험 참여자는 통제집단(남 20명, 여 15명), 실험집단(남 21명, 여 14명) 총 70명이고, 제시자극은 lavender barreme, lemon, orange sweet, chamomile roman의 향을 가습기를 통하여 분사하고, 자연적으로 냄새를 맡게 하였다. 처치전, 처치 1주 후 및 2주 후에 자기보고식으로 이루어진 발표불안척도(SAS)와 교사의 평가로 이루어진 발표행동평가척도(SBES)를 통하여 발표불안을 측정하였다. 그 결과, 아로마 처치를 받은 아동들이 그렇지 않은 아동들에 비해 유의하게 발표불안이 감소하였고, 발표행동이 향상된 것으로 나타났다.
        4,000원
        68.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The possibility to decrease agglomeration of Cu nano powders and their separation during pulsed wire evaporation (PWE) process was investigated by controlling the working gas system, i.e., the design of the gas path, the type and pressure of the atmospheric gas. As a result, it was possible to choose the optimal design of the gas path providing large specific surface area and high degree of separation of the synthesized Cu nano powders. It was also shown that an Ar+10∼50 mixture can be used in production of Cu nano powders, which do not react with nitrogen.
        4,000원
        69.
        2004.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A formation of aluminum hydroxide by hydrolysis reaction in the water has been studied by using nano aluminum powder fabricated by pulsed wire evaporation(PWE) method. The hydroxide type and morphology depending on temperature and pH were examined by structural analysis. The Boehmite(. or AIO(OH)) was predominantly formed in high temperature region over 4, while the Bayerite(. or ) below of hydrolysis temperature. The Boehmite formation was preferred to the Bayerite in acidic solution in the same hydrolysis temperature. The slowly formed Bayerite phase showed facet crystalline structure, while the fast formed Boehmite was fine fiber with a large aspect ratio of several nm in diameter and several hundred nm in length, and with much larger specific surface area(SSA) than that of Bayerite. The highest SSA was about /g.
        4,000원
        70.
        2004.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study the possibility to obtain a homogeneous mixture and to produce solid solutions and intermetallic compounds of Fe and Al nano particles by simultaneous pulsed wire evaporation (S-PWE) have been investigated. The Fe and Al wires with 0.45 mm in diameter and 35 mm in length were continuously co-fed by a special mechanism to the explosion chamber and simultaneously exploded. The characteristics, e.g., phase composition, particle shape, and specific surface area of Fe-Al nano powders have been analyzed. The synthesized powders, beside for Al and -Fe, contain significant amount of a high-temperature phase of -Fe, Fe Al and traces of other intermetallics. The phase composition of powders could be changed over broad limits by varying initial explosion conditions, e.g. wire distance, input energy, for parallel wires of different metals. The yield of the nano powder is as large as 40 wt % and the powder may include up to 46 wt % FeAl as an intermetallic compound.
        4,000원
        71.
        2004.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pulsed wire evaporation (PWE) method is known as the promising production-technique for nanopowders. In this study, we developed and modified the previous single wire explosion equipment to the simultaneous two-wire explosion one for the fabrication of alloy or mixture of nano metallic powder. First of all, both the theoretical and empirical background of pulsed wire explosion of single wire were summarized, and compared with our experimental results for Cu and Al single wlre explosion. After then, the simultaneous wire evaporation equipment was designed, constructed, and tested. The current and voltage behavior were well matched between the calculated ones from the circuit equations, and the experimental results from simultaneous explosion of Cu and Al wire.
        4,000원
        72.
        2004.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanoparticles of iron oxides have been prepared by the levitational gas condensation (LGC) method, and their structural and magnetic properties were studied by XRD, TEM and Mossbauer spectroscopy. Fe clusters were evaporated from a surface of the levitated liquid Fe droplet and then condensed into nanoparticles of iron oxide with particle size of 14 to 30 nm in a chamber filled with mixtures of Ar and gases. It was found that the phase transition from both - and -Fe to , which was evaluated from the results of Mossbauer spectra, strongly depended on the flow rate. As a result, - was synthesized under the flow rate of 0.1(Vmin)0.15, whereas was synthesized under the , flow rate of 0.15(Vmin)0.2.
        4,000원
        73.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Synthesis and characteristics of Cu nanopowder were considered by in-situ characterization method using SMPS in pulsed wire evaporation process. With increasing pressure in chamber, particle size and degree of agglomeration increased by increase of collision frequency. Also, it was found from the XRD analyses and BET measurements that crystallite size and particle size decreased with elevating applied voltage. However, SMPS measurements and TEM observation revealed the increase of particle size and degree of agglomeration with increase of applied voltage. These results suggested that particle growth and agglomeration depend on overheating factor in chamber at the early stage and thermal coagulation in filtering system during powder formation until collection.
        4,000원
        75.
        2003.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanocrystalline materials of Ni and Ni-Cu alloy have been synthesized by the pulsed wire evaporation (PWE) method and these abnormal magnetic properties in the magnetic ordered state have been characterized using both VSM and SQUID in the range of high and low magnetic fields. Ni and Ni-Cu particles with an average size of 20 to 80 nm were found to influence magnetic hysterisis behavior and the results of powder neutron diffraction patterns and saturation magnetization curves are shown to indicate the absence of the NiO phase. The shifted hysterisis loop and irreversibility of the magnetization curve in the high field region were observed in the magnetic-ordered state of both Ni and Ni-Cu. The virgin magnetization curve for Ni slightly spillover on the limited hysterisis loop (20kOe). This irreversibility in the high field of 50 kOe can be explained by non-col-linear behavior and the existence of the metastable states of the magnetization at the surface layer (or core) of the particle in the applied magnetic field. Immiscible alloy of Cu-Ni was also found to show irreversibility having two different magnetic phases.
        4,000원
        77.
        2002.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanoparticles of with a mean particle size of 4-30 nm have been prepared by a pulsed wire evaporation method, and its structural and magnetic properties were studied by SQUID magnetometer and Mossbauer spectroscopy. From the main peak intensity of XRD and absorption rate of Mossbauer spectrum, the amounts of and in as-prepared sample are about 70% and 30%, respectively. The coercivity (53 Oe) and the saturation magnetization (14 emu/g) are about 20% of those of the bulk . The low value of coercivity and saturation magnetization indicate that the phase nearly shows the spin glass-like behavior. Analysis of the set of Mossbauer spectrum indicates a distribution of magnetic hyperfine fields due to the particle size distribution yielding 20 nm of average particle size. The magnetic hyperfine parameters are consistent with values reported of bulk and . A quadrupole line on the center of spectrum represents of superparamagnetic phase of with a mean particle size of 7 nm or below.
        4,000원
        80.
        2002.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nano Cu powders, synthesized by Pulsed Wire Evaporation (PWE) method, have been compacted by Magnetic Pulsed Cojpaction(MPC) method. The microstructure and mechanical properties were analyzed. The optimal condition for proper mechanical properties with nanostructure was found. Both pure nano Cu powders and passivated nano Cu powders were compacted, and the effect of passivated layer on the mechanical properties was investigated. The compacts by MPC, which had ultra-fine and uniform nanostructure, showed higher density of 95% of theoretical density than that of static compaction. The pur and passivated Cu compacted at exhibited maximum hardnesses of 248 and 260 Hv, respectively. The wear resistance of those compacts corresponded to the hardness.
        4,000원
        1 2 3 4 5