Visfatin, an adipokine secreted by cells, is crucial for intracellular nicotinamide adenine dinucleotide+ biosynthesis. Extracellularly, visfatin plays diverse roles in inflammatory conditions, including obesity, which is closely linked to osteoclastogenesis. We previously showed that visfatin enhances receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in bone marrow-derived macrophages. However, its enzymatic activity during this process is poorly understood. Here, we investigated visfatin’s effects on RANKL-induced osteoclast differentiation. Our results demonstrate that visfatin promotes this differentiation, an effect inhibited by FK866, an inhibitor of visfatin’s enzymatic activity. Furthermore, FK866 also inhibited RANKL-induced osteoclast differentiation. These findings suggest that inhibiting visfatin’s enzymatic activity modulates osteoclast differentiation. Thus, visfatin plays an important role in osteoclastogenesis, both intracellularly and extracellularly, and FK866 has therapeutic potential for diseases characterized by imbalanced osteoclast formation, such as osteoporosis and periodontitis.
Effective cooling strategies are critical for cultivating high-quality ornamental plants during the summer. The fan-and-pad cooling system reduces greenhouse temperatures by drawing air through wet pads, which humidify and cool the air, aided by fans on the opposite side. However, the paper-based pads (corrugated cellulose) used in this system have limited durability and degrade with prolonged use. Nanocomposite hydrogels, with their polymer-based structure, can absorb and retain moisture through swelling, presenting a promising alternative. This study examines the application of nanocomposite hydrogels, focusing on their hygroscopic properties and cooling efficiency under various temperatures and wind speeds. When treated with lithium chloride solutions at 25%, 50%, 75%, and 100% saturation, higher LiCl concentrations reduced weight but increased swelling capacity. Optimal cooling effects were achieved with wind speeds of 1.0 m/s at 25°C and 1.5 m/s at 35°C, with greater efficiency observed at lower wind speeds. These findings suggest that integrating nanocomposite hydrogels into cooling pads could enhance durability and reduce maintenance compared with conventional paper pads.
We determined complete mitochondrial genome of Erpobdella sp. isolated in Korea. The circular mitochondrial genome of Erpobdella sp. is 15,469 bp long, which is longer than other three complete mitochondrial genomes of Erpobdella species. It includes 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNAs. Its GC ratio is 30.2%. Phylogenetic trees show that our mitochondrial genome is clustered in Erpobdellidae clade.
In story writing, interjections are used in dialogue to enhance the emotional tone of the text. However, crafting realistic dialogues that effectively incorporate interjections can be a challenging task for young learners with developing writing skills. This study examines how young learners utilize interjections in their story writing. The study analyzed the narratives of 242 students from three different English proficiency groups: lower and higher level EFL elementary school students and native English speakers in seventh to twelfth grade. The analysis aimed to understand the relationship between interjection frequency and writing qualities. The findings revealed a negative correlation between the occurrence of interjections and both content quality and vocabulary diversity. Additionally, comparisons across proficiency groups indicated that certain types of interjections were more prevalent in specific groups. These results suggest that learners should use interjections judiciously in story writing. Although interjections may seem peripheral, they warrant closer attention as they can subtly detract from writing qualities.
This study aims to identify crisis signs in small and medium enterprise (SME)-concentrated regions and establish measures to prevent economic recession and normalize regional economies through proactive responses. To achieve this, we investigated and analyzed the crisis status and outlook of companies located in Jeonbuk, their detailed management conditions, management issues by industry, difficulties in business operations, and policy demands. Out of 4,144 SMEs in Jeonbuk's concentrated areas, 270 companies responded to the survey. The results showed that 60% of the responding companies perceived their current management situation as being in a state of crisis. However, the outlook for the next quarter and the following year is expected to improve. Notably, compared to manufacturing companies, non-manufacturing firms responded that their crisis situation in the next quarter would not improve and expected the crisis to persist. In terms of detailed business conditions, regardless of the distinction between manufacturing and non-manufacturing sectors, all aspects of the survey, including domestic sales, export sales, operating profit, financial status, and the number of employees, indicated better prospects for the next quarter and the following year compared to the current quarter. The study's findings suggest that companies in SME-concentrated areas of Jeonbuk are relatively accurate in recognizing the crisis situation of their own businesses and operating markets. Additionally, the companies responded that crisis monitoring is necessary. Differences in difficulties faced by the manufacturing and non-manufacturing sectors imply the need for industry-specific financial support programs. Based on the survey results, we propose financial support projects tailored to the manufacturing and non-manufacturing sectors, considering the degree of market competition. For more precise research, future studies will involve extracting larger samples and conducting a detailed analysis by subdividing manufacturing sectors (e.g., food, metal) and non-manufacturing sectors (e.g., agriculture, design).
This study develops a machine learning-based tool life prediction model using spindle power data collected from real manufacturing environments. The primary objective is to monitor tool wear and predict optimal replacement times, thereby enhancing manufacturing efficiency and product quality in smart factory settings. Accurate tool life prediction is critical for reducing downtime, minimizing costs, and maintaining consistent product standards. Six machine learning models, including Random Forest, Decision Tree, Support Vector Regressor, Linear Regression, XGBoost, and LightGBM, were evaluated for their predictive performance. Among these, the Random Forest Regressor demonstrated the highest accuracy with R2 value of 0.92, making it the most suitable for tool wear prediction. Linear Regression also provided detailed insights into the relationship between tool usage and spindle power, offering a practical alternative for precise predictions in scenarios with consistent data patterns. The results highlight the potential for real-time monitoring and predictive maintenance, significantly reducing downtime, optimizing tool usage, and improving operational efficiency. Challenges such as data variability, real-world noise, and model generalizability across diverse processes remain areas for future exploration. This work contributes to advancing smart manufacturing by integrating data-driven approaches into operational workflows and enabling sustainable, cost-effective production environments.
Periodontal disease has been implicated in the progression of various systemic diseases, including chronic kidney disease (CKD). Recent evidence suggests that infection of Porphyromonas gingivalis , a major periodontal pathogen, may also contribute to vascular calcification in patients with CKD. In the present study, antibody array analysis of serum samples from CKD mice administered with oral P. gingivalis revealed significant alterations in protein expression profiles, with notable interleukin-7 (IL-7) upregulation. We demonstrated that P. gingivalis infection enhances the inorganic phosphate-induced calcification of vascular smooth muscle cells (VSMCs), a pathological process that is characteristically accelerated in CKD. Notably, IL-7 expression was significantly upregulated in the P. gingivalis -stimulated calcification of VSMCs. Moreover, IL-7 knockdown in VSMCs markedly attenuated the P. gingivalis -stimulated calcification of VSMCs and suppressed the expression of osteogenic markers, including alkaline phosphatase and Runt-related transcription factor 2. These findings suggest that IL-7 plays a crucial role in P. gingivalis -stimulated vascular calcification, potentially providing new therapeutic targets for preventing vascular calcification in CKD patients with periodontal infection.
Pyrochemical processing and molten-salt reactors have recently garnered significant attention as they are promising options for future nuclear technologies, such as those for recycling spent nuclear fuels and the next generation of nuclear reactors. Both of these technologies require the use of high-temperature molten salt. To implement these technologies, one must understand the electrochemical behavior of fission products in molten salts, lanthanides, and actinides. In this study, a rotating-disk-electrode (RDE) measurement system for high-temperature molten salts is constructed and tested by investigating the electrochemical reactions of Sm3+ in LiCl–KCl melts. The results show that the reduction of Sm3+ presents the Levich behavior in LiCl–KCl melts. Using the RDE system, not only is the diffusion-layer thickness of Sm3+ measured in high-temperature molten salts but also various electrochemical parameters for Sm3+ in LiCl–KCl melts, including the diffusion coefficient, Tafel slope, and exchange current density, are determined.
This study evaluated the efficacy of a wild boar repellent (Repellent A) consisting of tannins and plant oils (castor oil, garlic oil, and cinnamon oil). Sixty farmed wild boars (4-8 months old) were divided into three groups: the normal control group (NC, n=20), the experimental group (EP, n=20), and the comparative experimental group (C-EP, n=20), which used Repellent B consisting of guaiacol, eugenol, menthol, thymol, and indole. EP and C-EP were equipped with four repellents per feeder, while no repellents were installed in the NC feeder. The feed intake and the number of feeding approaches were measured for one week in all groups. The number of approach of wild boars in feeders was monitored daily using a CCTV camera. The daily feed intake per farmed wild boar in EP and C-EP was significantly decreased compared to NC (p<0.05), and EP was significantly decreased compared to C-EP (p<0.05). In the average number of daily approaches, EP and C-EP were significantly decreased compared to NC (p<0.05), and EP was significantly decreased compared to C-EP (p<0.05). In conclusion, Product A has been confirmed to have excellent repellent effects on wild boars, and it could be used to prevent wild boars from approaching pig farms.
This study aims to establish an online shopping mall marketing strategy based on big data analysis methods. The customer cluster analysis method was utilized to analyze customer purchase patterns and segment them into customer groups with similar characteristics. Data was collected from orders placed over one year in 2023 at ‘Jeonbuk Saengsaeng Market’, the official online shopping mall for agricultural, fish, and livestock products of Jeonbuk Special Self-Governing Province. K-means clustering was conducted by creating variables such as ‘TotalPrice’ and ‘ElapsedDays’ for analysis. The study identified four customer groups, and their main characteristics. Furthermore, regions corresponding to customer groups were analyzed using pivot tables. This facilitated the proposal of a marketing strategy tailored to each group’s characteristics and the establishment of an efficient online shopping mall marketing strategy. This study is significant as it departs from the traditional reliance on the intuition of the person in charge to operate a shopping mall, instead establishing a shopping mall marketing strategy through objective and scientific big data analysis. The implementation of the marketing strategy outlined in this study is expected to enhance customer satisfaction and boost sales.
The diversity of smart EV(electric vehicle)-related industries is increasing due to the growth of battery-based eco-friendly electric vehicle component material technology, and labor-intensive industries such as logistics, manufacturing, food, agriculture, and service have invested in and studied automation for a long time. Accordingly, various types of robots such as autonomous mobile robots and collaborative robots are being utilized for each process to improve industrial engineering such as optimization, productivity management, and work management. The technology that should accompany this unmanned automobile industry is unmanned automatic charging technology, and if autonomous mobile robots are manually charged, the utility of autonomous mobile robots will not be maximized. In this paper, we conducted a study on the technology of unmanned charging of autonomous mobile robots using charging terminal docking and undocking technology using an unmanned charging system composed of hardware such as a monocular camera, multi-joint robot, gripper, and server. In an experiment to evaluate the performance of the system, the average charging terminal recognition rate was 98%, and the average charging terminal recognition speed was 0.0099 seconds. In addition, an experiment was conducted to evaluate the docking and undocking success rate of the charging terminal, and the experimental results showed an average success rate of 99%.
In this study, an attempt was made to approximate the main characteristic values of Bi0.5(Na0.78K0.22)0.5TiO3 (= BNKT) depending on the content of Fe2O3 additives, aiming to approach the values of lead(Pb) piezoelectric ceramic materials (PZT). Specifically, when the piezoelectric coefficient (d33) value of lead(Pb) piezoelectric ceramic material (PZT polycrystalline ceramic powder) is 300[pC/N] or higher, it is applied for hard purposes such as ultrasonic welding machines and cleaning machines, and when it exceeds 330[pC/N], it is applied for soft purposes like piezoelectric sensors. In this study, research and development were conducted for devices with a piezoelectric coefficient (d33) of 300[pC/N] or more for actuators. For this purpose, K+ exceeding 0.02 to 0.12 mol% was added to (Na0.78K0.22)0.5Bi0.5TiO3 to analyze structural changes due to K+ excess, and (Na0.78K0.22)0.5Bi0.5TiO3 + 8mol% K2CO3 Ti4+ was substituted with Fe3+ to manufacture lead-free piezoelectric materials. As a result, ceramics with Fe3+ substitution at x = 0.0075 yielded an average value of d33 = 315[pC/N]. Furthermore, for ceramics with Fe3+ substitution at x = 0.0075, the average values of maximum polarization (Pmax), residual polarization (Prem), and coercive field (Ec) were found to be 39.63 μC/cm2, 30.45 μC/cm2, and 2.50 kV/mm, respectively. The reliable characteristic values obtained from the research results can be applied to linear actuator components (such as the zoom function of mobile cameras, LDM for skin care, etc.) and ultrasonic vibration components.
Background: Most patients with chronic stroke have difficulty walking, and various exercise methods are used clinically to improve the disability. Among them, various methods are being applied to improve walking through torso movement. Objectives: This study was conducted to determine the effect of Maitland vertebra joint mobilization exercise and Evjenth trunk muscle stretching exercise on the walking ability of patients with hemiparesis due to chronic stroke. Design: A randomized controlled trial. Methods: In this study, 30 chronic stroke patients with hemiplegia were divided into 15 patients in the Maitland vertebra joint mobilization group (MVJMG) and 15 in the Evjenth trunk muscle stretching exercise group (ETMSEG), and the intervention was conducted for 3 weeks, 5 times a week, 30 minutes a day. After the intervention, walking ability was measured using a gait analyzer. Results: In terms of walking ability, there was a significant increase in walking rate, walking speed, and stride length following the intervention in both the MVJMG and ETMSEG groups (P<.05). When comparing the difference in walking ability between the two groups, there was no significant difference in walking rate. Conclusion: The study found that both Maitland vertebra joint mobilization and Evjenth trunk muscle stretching exercises were effective for improving walking function in chronic stroke patients. However, there was no significant difference in effectiveness between the two interventions.
From 2020, Korean Animal and Plant Quarantine Agency has reset the withdrawal time (WT) for veterinary drugs typically used in livestock in preparation for the introduction of positive list system (PLS) program in 2024. This study was conducted to reset the MRL for tiamulin (TML) in broiler chickens as a part of PLS program introduction. Forty-eight healthy Ross broiler chickens were orally administered with TML at the concentration of 25 g/L (TML-1, n=24) and 50 g/L (TML-2, n=24) for 5 days through drinking water, respectively. After the drug treatment, tissue samples were collected from six broiler chickens at 1, 2, 3 and 5 days, respectively. According to the previously established analysis method, residual TML concentrations in poultry tissues were determined using LC-MS/MS. In TML-1, TML in all tissues was detected less than LOQ at 2 days after drug treatment. In TML-2, TML in liver and kidney was detected more than LOQ at 2 days after treatment. According to the European Medicines Agency’s guideline on determination of withdrawal periods, withdrawal periods of TML-1 and TML-2 in poultry tissues were established to 0 and 2 days, respectively. In conclusion, the estimated WT of TML in poultry tissues is shorter than the current WT recommendation of 5 days for TML in broiler chickens.
The family Baetidae is known to be the most species-rich family in the order Ephemeroptera. The genus Baetis contains up to 160 species, but members of the genus in East Asia are still poorly investigated. In this paper, Baetis spinoculis sp. nov., is described based on larval specimens collected in a stream of the Chiaksan mountain in Korea. While four species in the genus have been described in Korea: Baetis fuscatus (Linnaeus), B. silvaticus Kluge, B. pseudothermicus Kluge, and B. ursinus Kazlauskas, this new species is distinguished from other Korean baetid species by both genetic and morphological characteristics. B. spinoculis can be separated from the related B. pseudothermicus group by the COI genetic distant. The cuticle structures on paraproct plates and abdominal pigment patterns also distinguish B. spinoculis from B. pseudothermicus and other related species.