검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 30

        1.
        2021.03 구독 인증기관 무료, 개인회원 유료
        This study evaluated the antimicrobial activity of Endoseal TCS, an mineral trioxide aggregate-based root canal sealer, mixed with water-soluble mangostin derivatives (WsMD) of Garcinia mangostana L. (mangosteen) ethanol extract against Enterococcus faecalis and Staphylococcus aureus. The antibacterial activity of Endoseal TCS mixed with WsMD against three strains of E. faecalis and three strains of S. aureus was performed using agar diffusion test. The data showed that Endoseal TCS mixed with 0.115% WsMD had a zone of inhibition of 0.7 ± 0.2–2.4 ± 0.1 mm. The results suggest that Endoseal TCS mixed with WsMD of Garcinia mangostana L. ethanol extract is useful as a root canal sealer with antibacterial activity against E. faecalis and S. aureus .
        4,000원
        2.
        2019.12 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to investigate the antimicrobial effects of Australia propolis against cariogenic and periodontopathic bacteria. Antimicrobial activity was determined by evaluating the minimal bactericidal concentration (MBC). Cell cytotoxicity of propolis extract on normal human gingival fibroblast (HGF-1) cells was observed using the methylthiazolyldiphenyl-tetrazolium bromide assay. The data indicated that, with the exception of Aggregatibacter actinomycetemcomitans (KCOM 1306), the MBC values of the propolis strains were 0.25–1% without HGF-1 cell cytotoxicity. These results suggest that propolis can be used to develop oral hygiene products for the prevention of oral infectious disease.
        3,000원
        3.
        2019.09 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to investigate the antimicrobial activity of the ethanol extract of Garcinia mangostana L. (mangosteen) against Cutibacterium acnes (6 strains) and Staphylococcus aureus (6 strains). The antimicrobial activity of the mangosteen extract was evaluated based on its minimal bactericidal concentration. Cytotoxicity of the mangosteen extract against human embryonic kidney 293 (HEK 293) cells was determined using the cell counting method. The data showed that the mangosteen extract was not toxic to HEK 293 cells at a concentration of up to 16 μg/mL and killed 87.0% and 99.9% of C. acnes and S. aureus after 10 minutes and 1 hour of treatment, respectively. These results suggest that ethanol extract of mangosteen can be used as an anti-acne agent.
        4,000원
        4.
        2018.09 구독 인증기관 무료, 개인회원 유료
        Enterococcus faecalis is a major causative agent of endodontic treatment failure. The purpose of this study was to investigate bactericidal effects of ethanol extract of Garcinia mangostana L. (mangosteen extract) on five strains of E. faecalis that were isolated from human oral cavities. The bactericidal effects of mangosteen extract were assessed by measurement of minimum bactericidal concentration (MBC) value. The cytotoxicity of mangosteen extract on immortalized human gingival fibroblasts, hTERT-hNOF, was determined based on cell counting method. The data revealed the MBC value of mangosteen extract against the E. faecalis strains was 4 ㎍/ml. Additionally, the cell viability of mangosteen extract on hTERT-hNOF was 83.7-89.1% at the 1 to 16 ㎍/ml. These findings indicated that mangosteen extract could be used as a root canal cleaner during management of endodontic treatment failure caused by E. faecalis.
        3,000원
        5.
        2014.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        육종은 중간엽세포에서 기원하는 드문 악성 종양이다. 중 간엽 세포는 연조직과 뼈로 분화가 가능하므로 육종은 신체 어느 부분에서든지 발생할 수 있다. 하지만 담관 육종은 성 인에서 발생률이 극히 낮다. 폐쇄성 황달이 가장 흔한 증상 이지만 특징적인 증상이나 징후는 없다. 또한 영상학적 검사를 하여도 총담관낭이나 간농양 등으로 오인하는 경우가 많다. 따라서 진단과 치료가 매우 어렵다. 우리는 70세 여자 환자에서 간내 담석에 동반된 간농양으로 오인하였으나 성장률이 매우 빠른 간내담관 육종으로 진단된 증례를 경험하였기에 문헌고찰과 함께 보고한다.
        4,000원
        6.
        2014.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        담관 막양구조는 유병률, 병인에 대해 명확히 정립되지 않은 매우 드문 질환이다. 원인은 선천적으로 발생하기도 하며 담관결석과 동반하여 만성 염증에 의해 후천적으로 발생하기도 한다. 특징적인 임상 증상이 없는 경우가 많으나 일부 환자에서 폐쇄성 담관염의 증상을 유발할 수 있다. 진단 또한 어려웠으나 최근 여러 담도계 검사법의 발달로 조기 발견 빈도가 높아지게 되었다. 저자들은 증상이 없이 우연히 담관 결석이 발견된 65세 남자 환자에서 역행성 담췌관조영술로 총담관 막양구조를 진단하고 풍선 확장술로 치료한 예를 경험하였기에 문헌고찰과 함께 보고하는 바이다.
        4,000원
        7.
        2010.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to reveal how EA affects BAX and NF-kB involved in cell deaths from global ischemia, and to do this, observes the changes of BAX and NF-kB caused by EA application after transient global ischemia. The experimental method is to give rise to global ischemia and apply EA to 27 SD rats with the particulars of being six-week-old, male, around-300 gram-weighing, and adapted to laboratory environment for more than a week, and divide them into three groups, that is, GV20 EA group(n=9), L14 EA group(n=9), no-treatment GI group(n=9), and then observe their changes of BAX and NF-kB at the time lapse of 6 hours, 9 hours and 12 hours after ischemia, using western blotting. The numerical decrease of BAX expression at the time lapse of 9 hours after EA application, though not statistically significant, was observed in GV20 EA group and L14 EA group, and the NF-kB expression appeared statistically significant decrease in GV20 EA group and L14 EA group, but the expression was higher in the group with EA application. Therefore, EA application at the early phase of global ischemia is considered to affect BAX and NF-kB and play a positive role in decreasing apoptosis and cell deaths by inflammation.
        4,000원
        10.
        2023.05 서비스 종료(열람 제한)
        The organic complexing agents such as ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and isosaccharinic acid (ISA) can enhance the radionuclides’ solubility and have the potential to induce the acceleration of radionuclides’ mobility to a far-field from the radioactive waste repository. Hence, it is essential to evaluate the effect of organic complexing agents on radionuclide solubility through experimental analysis under similar conditions to those at the radioactive waste disposal site. In this study, five radionuclides (cesium, cobalt, strontium, iodine, and uranium) and three organic complexing agents (EDTA, NTA, and ISA) were selected as model substances. To simulate environmental conditions, the groundwater was collected near the repository and applied for solubility experiments. The solubility experiments were carried out under various ranges of pHs (7, 9, 11, and 13), temperatures (10°C, 20°C, and 40°C), and concentrations of organic complexing agents (0, 10-5, 10-4, 10-3, and 10-2 M). Experimental results showed that the presence of organic complexing agents significantly increased the solubility of the radionuclides. Cobalt and strontium had high solubility enhancement factors, even at low concentrations of organic complexing agents. We also developed a support vector machine (SVM) model using some of the experimental data and validated it using the rest of the solubility data. The root mean square error (RMSE) in the training and validation sets was 0.012 and 0.016, respectively. The SVM model allowed us to estimate the solubility value under untested conditions (e.g., pH 12, temperature 30°C, ISA 5×10-4 M). Therefore, our experimental solubility data and the SVM model can be used to predict radionuclide solubility and solubility enhancement by organic complexing agents under various conditions.
        11.
        2023.05 서비스 종료(열람 제한)
        The operation of nuclear power plants, nuclear waste depositories, and the decontamination and decommissioning of nuclear power plants all have the possibility of generating various kinds of radionuclides that can be formed as gaseous or liquid phases. Among the radionuclides, strontium is considered as most harmful substance due to its abundance in nuclear accident effluent, long half-life, high fission yield, high water solubility, and high mobility in aquatic environment. To remove strontium from aquatic environment, adsorption technique is mainly used with high economic feasibility, efficiency, and selectivity. Previously, we synthesized sodium titanates with mid-temperature hydrothermal method as selective strontium adsorbent in aqueous solution. Moreover, it was demonstrated that synthesized sodium titanates show high strontium adsorption rate with high selectivity with high surface area, pore diameter and volume. Herein, we investigated the surface structure of synthesized sodium titanates before and after strontium adsorption in aqueous solution using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) analysis. According to SEM and EDS experimental results, aquatic strontium can be adsorbed as surface precipitation with formation of cube-shaped structure, which is quite similar strontium titanate structure crystals onto the surface of sodium titanates. In addition, XPS experimental results revealed that the titanium ions on the surface of sodium titanates were oxidized during strontium surface precipitation process, and the sodium ion on the surface of sodium titanates were exchanged with aquatic strontium ions via ion exchange process during strontium adsorption process.
        12.
        2022.10 서비스 종료(열람 제한)
        Organic complexing agents may affect the mobility of radionuclides at low- and intermediate-level radioactive waste repositories. Especially, isosaccharinic acid (ISA) is the main cellulose degradation product under high pH conditions in cement pore water. ISA can combine with radionuclides and form stable complexes that adversely influence adsorption in the concrete phase, resulting in radionuclides to leach to the near- and far-fields of repositories. This study focuses on investigating the sorption of ISA onto engineered barriers such as concrete, thereby studying adsorption isotherms of ISA on concrete and comparing various isotherm models with the experimental data. The adsorption experiment was conducted in three background solutions, groundwater (adjusted to pH 13 using NaOH), State 1 (artificial cement pore water, pH 13.3), and State 2 (artificial cement pore water, pH 12.5), in a batch system at a temperature of 20°C. Concrete was characterized using BET, Zeta-potential analyzer, XRD, XRF, and SEM-EDS. ISA concentrations were detected using HPLC. The experimental data were best fitted to one-site Langmuir isotherm; On the other hand, either two-site isotherm or Freundlich isotherm couldn’t give reasonable fitting to the experimental data. The observed ISA sorption behavior on concrete is crucial for the disposal of radioactive waste because it can significantly lower the concentration of ISA in the pore water. Although one-site Langmuir isotherm might effectively represent the sorption behavior of ISA on concrete, the underlying mechanism is still unknown, and further investigation should be done in the near future.
        13.
        2022.10 서비스 종료(열람 제한)
        Low- and intermediate-level radioactive wastes have been disposed of in the first-phase deep underground silo disposal at Gyeongju in South Korea. These radioactive wastes contain harmful radionuclides such as Uranium-238 (238U), which can pose long-term and deleterious effects on humans and the natural environment. Ethylenediaminetetraacetic acid and isosaccharinic acid, which can be formed via cellulosic waste degradation under high alkaline conditions might considerably enhance the transport behavior of 238U with the intrusion of rainwater and groundwater. In this study, the engineered barriers (concrete and grout) and natural barriers (sedimentary rock and granite) were used to investigate the 238U transport behavior in artificial cementitious porewater of State I (pH 13.3) and State II (pH 12.5) based on groundwater or rainwater. The surface properties and geochemical compositions of barrier samples were characterized using XRD, XRF, SEM-EDX, and BET. The transport behaviors of 238U in various solution conditions were observed by sorption distribution coefficient (Kd) at a range of initial chelating agents concentration (10-5-10-2 M). The sorption behavior of 238U was retarded more in the engineered rock barriers than in the natural rock barriers. The mobility enhancement of 238U was more significant in State I than in State II. In comparison with the absence of chelating agents, negligible changes in the Kd values of 238U were observed at less than initial chelating agent concentrations of 10-4 M. However, the Kd values of 238U were significantly reduced at initial chelating agent concentrations higher than 10-3 M. Therefore, these experimental findings show that the transport behavior of 238U into the geo- and bio-sphere could be accelerated by the presence of chelating agents and the type of cement degradation states.
        14.
        2022.10 서비스 종료(열람 제한)
        Engineered barriers (concrete and grout) in Low- and Intermediate-Level Waste (L/ILW) disposal facilities tend to degrade by groundwater or rainfall water over a long period of time. During the degradation process, radionuclides stored in the disposal facility might be released into the pore water, which can pass through the natural rock barriers (granite and sedimentary rock) and may reach the near-field and far-field. In this transportation, radionuclide might be sorbed onto the engineered and natural rock barriers. In addition, the organic complexing agent such as ethylenediaminetetraacetic acid (EDTA) and α-isosaccharinic acid (ISA), is also present in pore water, which may affect the sorption and mobility of radionuclide. In this study, the sorption and mobility of 90Sr under different conditions such as two pHs (7 and 13), different initial concentrations of organic complexing agents (from 10-5 M to 10-2 M), and solutions (groundwater, pore water, and rainfall water) were investigated in a batch system. The groundwater was collected at the L/ILW disposal facility located at Gyeongju in South Korea. The pore water and rainfall water were artificially made in the laboratory. The concrete, grout, granite, and sedimentary rock samples were collected from the same study sites from where the groundwater was collected. The rock samples were crushed to 53-150 micrometers and were characterized by XRD, XRF, SEM-EDS, BET, and zeta potential analyzer. 90Sr concentration was determined using liquid scintillation counting. The sorption of 90Sr was described by distribution coefficients (Kd) and sorption reduction factor (SRF). In the case of EDTA, the Kd values of 90Sr remained constant from 10-5 M to 10-3 M and tended to decrease at 10-2 M, while in case of ISA the Kd values decreased steadily as the concentration of ISA was increased from 10-5 M to 10-3 M; However, a sudden reduction in the Kd values were observed above 10-2 M. In comparison to EDTA, ISA gave a higher SRF of 90Sr. Therefore, from the above results, it can be concluded that the presence of ISA has a greater effect on the sorption and mobility of radionuclide in the solutions than EDTA, and the radionuclide may reach near- and far-field of the L/ILW disposal facility.
        15.
        2022.10 서비스 종료(열람 제한)
        Radionuclides stored in a radioactive waste repository over a long period of time might be leached through the barriers such as engineered rock (cement) and natural rock (granite). Organic complexing agents such as ethylenediaminetetraacetic acid (EDTA) and isosaccharinic acid (ISA) may also influence the mobility of radionuclides. In this study, a continuous fixed-column reactor packed with engineered and natural rocks was designed to investigate the effect of organic complexing agents on cesium mobility through cement and granite under anaerobic conditions. The influent flow rate of the mixed solution (organic complexing agent and cesium) at the column bottom was 0.1 mL/min, while that of groundwater was 0.2 mL/min, which was introduced between cement and granite layers in the middle of the column. The hydraulic properties such as diffusion coefficient and retardation factor were derived by a bromide tracer test. The effects of different operating parameters, such as initial cesium concentrations, initial EDTA or ISA concentrations, and bed size, on the cesium adsorption were investigated. The Thomas, Adams-Bohart, and Yoon-Nelson models were applied to the experimental data to predict the breakthrough curves using non-linear regression. These results suggest that organic complexing agents such as EDTA and ISA significantly influence the mobility of cesium in the barriers, indicating that the presence of complexing agents enhances the migration of cesium to the geosphere.
        16.
        2022.10 서비스 종료(열람 제한)
        Radionuclides can be leached into groundwater or soil over a long period of time due to unexpected situations even after being permanently disposed of in a repository. Therefore, it is necessary to investigate the mobility of radionuclides for the safety assessment of radioactive waste disposal. In this study, the effects of organic complexing agents such as ethylenediaminetetraacetic acid (EDTA) and isosaccharinic acid (ISA) on the sorption behavior of 239Pu and 99Tc over cementitious (concrete and grout) and natural rock samples (granite and sedimentary rock) were investigated in batch sorption experiments. For characterization of rock samples, XRD, XRF, FT-IR, FE-SEM, BET, and Zeta-potential analyses were performed. For the evaluation of mobility, the distribution coefficient (Kd) was selected and compared. The adsorption experiment was carried out at two pHs (7 and 13), a temperature of 20°C, and a range of organic complexing agents concentrations (10-7~10-2 M and 10- 5~10-2 M for 239Pu and 99Tc, respectively). The radionuclides concentrations in adsorption samples were analyzed using ICP-MS. The Kd values for 239Pu in all rock samples reduced significantly due to the presence of EDTA, even at low concentrations such as 10-5 M. In the case of ISA, the limiting noeffect concentration was much higher than that of EDTA. On the other hand, 99Tc showed relatively lower Kd values than 239Pu, and the sorption behavior of 99Tc was almost unaffected by the organic complexing agents for all rock samples. Therefore, it is possible to assume that the increased mobility of radionuclides, especially, 239Pu, in groundwater caused by the lowering of sorption at even low concentrations of organic complexing agents may result in the transport of radionuclides to the nearand far-field location of the repository.
        17.
        2022.10 서비스 종료(열람 제한)
        Cellulose-based wastes can be degraded into short-chain organic acids at the cementitious radioactive waste repository. Isosaccharinic acid (ISA), one of the main degradation products, can form the chelate complex with metals and radionuclides, and these complexes have a potential that can accelerate to move the radionuclides to far-field from the repository. This study characterized the amount of generated ISA from typical cellulosic materials in the repository. Two different degradation experiments were conducted under alkaline conditions (saturated with Ca(OH)2 at pH 12.4): i) cellulosic material mixture under an opened condition (partially aerobic), and ii) cellulosic material under an anaerobic condition in a nitrogen-purged glove box. In the first case, three different types of cellulosic materials–paper, cotton, and wood– were mixed at the same ratio, and the experiments were carried out at three different temperatures (20°C, 40°C, and 60°C). It revealed that both the cellulose degradation rate and generated ISA concentration were high at high reaction temperatures, and various soluble degradation products such as formic acid and lactic acid were generated. The cellulose degradation in this work seems to still stay at a peeling-off process. In the second study, each type of cellulosic material was applied in its own batch experiments, and the amount of generated ISA was in the order of paper > wood > cotton. The above two experiments are supposed to be a long-term study until the generated ISA reaches an equilibrium state.
        18.
        2022.10 서비스 종료(열람 제한)
        Organic complexing agents which are contained in the radioactive waste can form the complex with radionuclides and enhance the solubility of radionuclides. The mobility of radionuclides to the far-field from the repository will be increased by radionuclide-ligand complex formation. Therefore, the assessment of the radionuclides’ solubility should be performed in the presence of organic complexing agents. In this study, five radionuclides (cobalt, strontium, iodine, cesium, and uranium) and three organic complexing agents (ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and isosaccharinic acid (ISA)) were selected as model radionuclides and organic complexing agents, respectively. For simulating the in-situ condition, the groundwater near the repository was collected and applied in solubility experiments and the solubility was measured in various environmental conditions such as different pHs (7, 9, 11, and 13), temperatures (10°C, 20°C, and 40°C), and a range of organic complexing agent concentrations (10-5, 10-4, 10-3, and 10-2 M). In cases of cesium and iodine, they were very soluble in all conditions, and the effect on their solubilities was not observed. However, at high pHs, cobalt and strontium showed lower solubilities than at neutral pH and the solubility enhancement by the organic complexing agents was significant. Moreover, the effects of each organic ligand showed obvious differences and were in the order of EDTA > NTA > ISA. The solubility of uranium was increased with increasing the organic ligand concentration at lower pHs, but the organic complexing agents did not cause a remarkable difference at high pHs. According to these results, the presence of complexing agents could enhance the radionuclides’ solubility and increase the potential to release the radionuclides to the far-field from the repository. Solubility experiments of other major radionuclides in the repository are in progress.
        1 2