검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 54

        41.
        2016.10 서비스 종료(열람 제한)
        Background : Acanthopanax sessiliflorus (Rupr. et Maxim) Seem, belonging to the Araliaceae family, is widely distributed in Korea, China, and Japan. The plants belonging to Acanthopanax species are traditionally used in Korea as anti-rheumatoid arthritis, anti-inflammatory and anti-diabetic drugs and are recognized to have ginseng-like activities. A simple and sensitive high-performance liquid chromatographic (HPLC) method was developed and validated for independent analysis of major compounds and chlorogenic acid in A. sessiliflorus fruits. Chlorogenic acid was reported that prevent cancer and cardiovascular disease in vivo. Also, it has antioxidant effect in vitro test. In the previous experiment, chlorogenic acid were found in A. sessiliflorus fruits. This study was performed to identification of the major compounds and investigate the method validation for the determination of chlorogenic acid in A. sessiliflorus fruits. Methods and Results : Three major compounds were recorded on a Varian Unity Inova AS-400 FT-NMR spectrometer and analyzed by the new HPLC analysis method. HPLC analysis was carried out using an Waters e2695 and PDA detector. The new analyasis method was validated by the measurement of intra-day, inter-day precision, accuracy, limit of detection (LOD, S/N=3), and limit of quantification (LOQ, S/N=10) of chlorogenic acid. The results showed that the correlation coefficient (R2) for the calibration curves of chlorogenic acid was 0.997 in terms of linearity. The limit of detection (LOD) and limit of quantification (LOQ) were 0.565 ㎍/ml and 2.88 ㎍/ml, respectively. There was no interfering peak observed each other and HPLC system was suitable for analysis showing goodness of peak and high precision. Conclusion : This method is suitable to detect and quantify major compounds in A. sessiliflorus fruits. Furthermore, the result will be applied to establish chlorogenic acid as an standard compound for A. sessiliflorus fruits.
        43.
        2015.04 KCI 등재 서비스 종료(열람 제한)
        본 연구는 경북 영천시 보현산(북위 36° 08-09’, 동경 128° 57-59’, 해발고도 1,124 m)에 자생하는 식물의 분포를 파악하 기 위해 수행되었다. 2012년 3월부터 2014년 7월까지 총 22회에 걸쳐 조사된 관속식물은 총 105과 327속 522종 11아종 48 종 8품 종 589분류군으로 정리되었다. 한국고유종으로는 13분류군, 환경부지정 법적관리 보호식물Ⅱ급이 2분류군, 적색목록식물 이 10분류군, 식물구계학적 특정식물이 5등급이 5분류군, 4등 급은 5분류군, 3등급은 16분류군, 2등급은 20분류군, 1등급은 37분류군, 귀화식물이 37분류군으로 나타났다. 용도별 구성은 식용 240분류군(40.7%), 약용 205분류군(34.8%), 관상용 62분 류군(10.5%), 목초용 213분류군(36.2%), 목재용 15분류군(2.5%), 섬유용 8분류군(1.3%), 공업용 3분류군(0.5%)으로 나타났다.
        44.
        2014.07 서비스 종료(열람 제한)
        Mungbean (Vigna radiata) is a fast-growing, warm-season legume crop that is primarily cultivated in developing countries of Asia. We constructed a draft genome sequence of mungbean to facilitate genome research into the subgenus Ceratotropis and to enable a better understanding of the evolution of leguminous species. The draft genome sequence covers 80% of the estimated genome, of which 50.1% consists of repetitive sequences. In total, 22,427 high confidence protein-coding genes were predicted. Based on the de novo assembly of additional wild mungbean species, the divergence of what was eventually domesticated and the sampled wild mungbean species appears to have predated domestication. Moreover, the de novo assembly of a tetraploid Vigna species (Vigna reflexo-pilosa var. glabra) provided genomic evidence of a recent allopolyploid event. To further study speciation, we compared de novo RNA-seq assemblies of 22 accessions of 18 Vigna species and protein sets of Glycine max and Cajanus cajan. The species tree was constructed by a Bayesian Markov chain Monte Carlo method using highly confident orthologs shared by all 24 accessions. The present assembly of V. radiata var. radiata will facilitate genome research and accelerate molecular breeding of the subgenus Ceratotropis.
        46.
        2010.09 서비스 종료(열람 제한)
        The canine major histocompatibility complex (MHC) is referred to dog leukocyte antigens (DLA), which is known to be the most polymorphic genetic system in canine species. Many cloned dogs have been produced since Snuppy, first cloned dog, there was no research about genetic identity of MHC among cloned animals. Recently in Lee’s group, two non-transgenic cloned beagles (BG1, 2) were produced by somatic cell nuclear transfer (SCNT) using fetal fibroblast (BF). Also, four transgenic cloned beagles (Ruppy 1-3, 5) were generated using transgenic BF transfected with Red fluorescent protein (RFP) gene. We hypothesize that non-transgenic (BG1, 2) and transgenic (Ruppy 1-3, 5) cloned beagles derived from identical donor cells have the same immunological genetic characteristic except for RFP gene insertion in the genome. Thus, the aim of this study is to confirm the immunological identity of DLA class II in cloned beagles produced using same nuclear donor cell. Genomic DNA was extracted from blood of BG1, BG2, Ruppy 1, 2, 3 and 5. Genomic DNA of normal two control beagle, no correlation with BF was also investigated for rulling out the possibility that beagles were inbred. Forward and reverse primers used for DLA-DQA1 and DQB1 respectively were DQAF: 5’-TAAGGTTCTTTTCTCCCTCT-3’ and DQAR: 5’-GGACAGATTCAGTGAAGAGA-3’ DQBR:5’-CTCACTGGCCCGGCTGTCTC-3’ and DQBR: 5’-CACCTCGC CGCTGCAACGTG-3’. Polymerase Chain Reaction (PCR) products were purified, sequenced directly using the Big Dye Terminator kit. Sequencing analysis was performed on an automated 3730xl DNA analyzer. In experiment 1, sequence of DLA-DQ alpha 1 (DQA1) and DLA-DQ beta 1 (DQB1) exon 2, hypervariabel region, was compared in BG1 and BG2. Experiment 2 also compared the sequence of DQA1 and DQB1 among Ruppy 1, 2, 3 and 5. Experimental 3 compared sequence of DQA1 and DQB1 among all cloned dogs (BG1, BG2 and Ruppy 1-3, 5). As a result, BG1 and BG2 have same allele for DQA1 and DQB1 as we expected. They share DQA1*00101 and DQB1*02901 in experiment 1. In experiment 2, Ruppy 1, 2, 3 and 5 also have identical DQA1*00101 and DQB1*02901 allele. No discrimination between transgenic dogs and cloned dogs was seen in DQA1 and DQB1 Allele in experiment 3. DQA1, DQB1 allele was identified as *00101 and *02901 in all dogs. We provided the allele identity of DQA1and DQB1 in cloned beagles, which can be used as preliminary data for immunological related studies. In conclusion, transgenic cloned dogs despite of red fluorescent protein genes being inserted in their nuclear DNA were immunologically compatible with non-transgenic cloned dogs. We demonstrated that cloned beagles produced using identical nuclear donor were immunologically compatible.
        1 2 3