In this paper, a water rescue mission system was developed for water safety management areas by utilizing unmanned mobility( drone systems) and AI-based visual recognition technology to enable automatic detection and localization of drowning persons, allowing timely response within the golden time. First, we detected suspected human subjects in daytime and nighttime videos, then estimated human skeleton-based poses to extract human features and patterns using LSTM models. After detecting the drowning person, we proposed an algorithm to obtain accurate GPS location information of the drowning person for rescue activities. In our experimental results, the accuracy of the Drown detection rate is 80.1% as F1-Score, and the average error of position estimation is about 0.29 meters.
Ensuring operational safety and reliability in Unmanned Aerial Vehicles (UAVs) necessitates advanced onboard fault detection. This paper presents a novel, mobility-aware multi-sensor health monitoring framework, uniquely fusing visual (camera) and vibration (IMU) data for enhanced near real-time inference of rotor and structural faults. Our approach is tailored for resource-constrained flight controllers (e.g., Pixhawk) without auxiliary hardware, utilizing standard flight logs. Validated on a 40 kg-class UAV with induced rotor damage (10% blade loss) over 100+ minutes of flight, the system demonstrated strong performance: a Multi-Layer Perceptron (MLP) achieved an RMSE of 0.1414 and R² of 0.92 for rotor imbalance, while a Convolutional Neural Network (CNN) detected visual anomalies. Significantly, incorporating UAV mobility context reduced false positives by over 30%. This work demonstrates a practical pathway to deploying sophisticated, lightweight diagnostic models on standard UAV hardware, supporting real-time onboard fault inference and paving the way for more autonomous and resilient health-aware aerial systems.
Maize (Zea mays. L) is one of the major sources of green fodder for livestock in Pakistan. Crop management plays a key role in obtaining high yields for green fodder. Fertilizer application, seed rate, and row spacing are critical components of crop management, which can significantly affect crop biomass. To determine the best production technology, a two-year (2021-2023) study was conducted at the research area of National Agricultural Research Center, Islamabad. Plant height, number of leaves, leaf area, green fodder yield per acre, and green fodder yield per hectare were recorded. Various row spacing (15 cm, 30 cm, 45 cm, and 60 cm), fertilizer ratio (N: P = 55:30, 65:40, 75:50, and 85:60), and seed rates (30 kg/ac, 35 kg/ac, 40 kg/ac, and 45 kg/ac) were applied. Results obtained experiments revealed that in both growing seasons, the maximum green fodder yield was obtained when fertilizer N: P ratio was 75:50 (green fodder biomass: 74.61 t/ha and 72.56 t/ha). Similarly, the optimal seed rate was found to be 40 kg/ac, which resulted in the highest green fodder yield (73.41 t/ha and 72.88 t/ha in two seasons). Furthermore, the plant of maize at row spacing of 30 cm was found to generate the maximum green fodder yield (72.39 t/ha and 72.40 t/ha, respectively). Green fodder yield per hectare was found to be positively correlated with plant height, number of leaves, and leaf area. These findings underscore the significance of applying a fertilizer ratio of N: P = 75:50, a seed rate 40 kg/ac, and a row spacing of 45 cm for higher yields of green fodder in maize crop.
Production technology trials for PARC’s new fodder oat cultivar (PARC-Oat) were conducted at the National Agricultural Research Center (NARC) under rain-fed conditions in Islamabad from 2021 to 2023. The effects of different fertilizer doses, planting densities (seed rates), and inter-row spacing on green fodder yield were studied. The experiment comprised four fertilizer doses of nitrogen and phosphorus (N:P) (55:30, 65:40, 75:50, and 85:60 kg/ha), four seed rate densities (30 kg/ac, 35 kg/ac, 40 kg/ac, and 45 kg/ac), and four inter-row spacings (15 cm, 30 cm, 45 cm, and 60 cm). Results based o n k ey p arameters a ffecting t he y ield of PARC-O at—namely plant height (cm), leaf area (cm²), leaves per tiller, number of tillers per plant, and green fodder yield (t/ha)—indicated that the maximum yield of 72.74 t/ha was observed with the fertilizer dose of 75:50 kg/ha (N:P). Similarly, a seed rate of 40 kg/ha produced optimal planting densities, resulting in the highest green fodder yield of 72.85 t/ha, while an inter-row spacing of 30 cm yielded the maximum green fodder yield of 74.30 t/ha. These results suggest that to achieve maximum green fodder biomass of oats, best management practices should include the application of a fertilizer dose of 75:50 (N:P), a seed rate of 40 kg/ha, and an inter-row spacing of 30 cm.
This study systematically analyzes research trends and significant themes in academic studies on Hanbok, Korea’s traditional attire, published between 2015 and 2024. Recognizing Hanbok’s evolving role as both a cultural icon and a modern fashion item, it broadens the scope of prior research, which predominantly focused on design and pattern analysis. A qualitative meta-analysis of 230 academic papers indexed in the Korea Citation Index was conducted using the MAXQDA program. The findings show a steady increase in scholarly interest in Hanbok over the past decade, with a peak in 2020. Furthermore, the study categorizes Hanbok research into six key areas: design and patterns, consumer behavior and tourism, literature reviews, case studies, education, and digital technologies. Notably, the multidisciplinary nature of Hanbok research includes growing interest in its fusion with digital technologies, such as virtual reality and the metaverse, suggesting future directions for digitalization and global presence. This research highlights Hanbok’s expanding significance in both traditional culture and modern contexts, positioning it as an important cultural icon in domestic and international markets. The study emphasizes the need for further exploration into under-explored areas, such as Hanbok’s role in global tourism and adaptation to digital environments. Practical applications include opportunities for the Hanbok industry to leverage digital platforms, cultural tourism, and personalized marketing strategies. This study provides a valuable foundation for future research on Hanbok’s global reception and continued development as a cultural and commercial asset.
Pluripotent stem cells (PSCs) are undifferentiated cells with the potential to develop into all cell types in the body. They have the potential to replenish cells in tissues and organs, and have unique properties that make them a powerful tool for regenerative therapy. Embryonic stem cells (ESCs) derived from the inner cell mass of the blastocyst of pre-implantation embryo and epiblast stem cells (EpiSCs) derived from the epiblast layer of post-implantation embryo are the well-known PSCs. These stem cells can differentiate into any of three germ layers of germ cells (endoderm, mesoderm and ectoderm). Additionally, induced pluripotent stem cells (iPSCs) refer to adult somatic cells reprogrammed to return to the pluripotent state by introducing specific factors. This is a breakthrough in stem cell research because ethical concerns such as fertilized embryo destruction can be avoided. PSCs have tremendous potential in treating degenerative cells by generating the cells needed to replace damaged cells, which can also allow to generate specific cell types to study the mechanisms of the disease and create disease models that screen for potential drugs. However, if the proliferative capacity of PSCs is not controlled, there is a risk that tumors will form, as this can lead to uncontrolled growth in their proliferative capacity. In addition, when PSCs are used for therapeutic purposes, there is a risk that the body’s immune system rejects the transplanted cells when the transplanted cells do not originate from the patient’s own tissue. Taken together, PSC is the foundation of stem cell research and regenerative medicine, providing disease treatment and animal development understanding. We would like to explain the classification of PSCs based on their developmental potential, the types of PSCs (ESCs, EpiSCs and iPSCs), their pluripotent status (naïve vs. primed) and alkaline phosphatase (AP) in PSCs and PSCs in domestic animals.
갯취(Ligularia taquetii)는 국화과에 속하는 한반도 특산식물 로, 관상가치가 뛰어나지만 한국 관속식물 적색목록에서 취약종 (VU)으로 분류되며 보존이 필요한 종이다. 본 연구는 갯취 종자 의 휴면 유형을 분류하고, 후숙 처리 효과를 확인하여 보존을 위한 기초 자료를 제공하고자 하였다. 2022년과 2023년에 채종한 종자를 사용하여 온도, 저온 습윤, GA3, 후숙 처리 실험을 진행하였다. 갯취 종자는 수분을 원활하게 흡수하였고, 모체에 서 탈리될 때 배가 형태적으로 완전히 발달한 상태였다. 4, 15/6, 20/10, 25/15℃에서 배양한 결과, 4주간 발아하지 않았 기 때문에 생리적 휴면(physiological dormancy, PD)으로 분 류하였다. 후숙 처리를 하지 않거나 6주간 후숙 처리만 한 종자 의 발아율은 20% 미만이었으나, 후숙 처리 후 8주 동안 저온 습윤 처리한 종자의 발아율은 70%로 증가하였다. 또한, 후숙 처리 후 GA3 100 mg·L⁻¹ 농도 처리 시 49% 발아하였다. 따라 서, 갯취 종자의 PD를 타파하기 위해 후숙 후 저온 습윤 또는 GA3 처리가 효과적인 것으로 보인다.
Background: Pluripotent stem cells (PSCs) are capable of differencing into various cell types in the body, providing them valuable for therapy of degenerative diseases. Patientspecific treatments using PSCs, such as mesenchymal stem cells in patient’s own body, may reduce the risk of immune rejection. Inducing the differentiation of PSCs into vascular endothelial cells (ECs) altering culture conditions or using specific growth factors is able to applied to the treatment of vascular diseases. The purpose of this study was to induce the differentiation of porcine epiblast stem cells (pEpiSCs), bone marrow-derived mesenchymal stem cells (pBM-MSCs) and adipose-derived mesenchymal stem cells (pAMSCs) into ECs and then examine the functionality of vascular ECs. Methods: Porcine pEpiSCs, pBM-MSCs and pA-MSCs were induced to differentiate into ECs on matrigel-coated plates in differentiation medium (EBM-2 + 50 ng/mL of VEGF) for 8 days. Cells differentiated from these stem cells were isolated using CD-31 positive (+) magnetic-activated cell sorting (MACS) and then proliferated in M199 medium. Evaluation of ECs differentiated from these stem cells was treated with capillary-like structure formation and three-dimensional spheroid sprouting assay. Results: Porcine pEpiSCs, pBM-MSCs and pA-MSCs showed similar expression of pluripotency-related genes (OCT-3/4. NANOG, SOX2). These stem cells were differentiated into vascular ECs, but showed different morphologies after the differentiation. Cells differentiated from pEpiSCs showed an elongated spindle-like morphology, whereas cells differentiated from pBM-MSCs showed a round pebble-like morphology. In the case of pA-MSCs, these two morphologies were mixed with each other. Additionally, vascular ECs differentiated from these stem cells showed different formation of capillary-like structure formation and three-dimensional spheroid sprouting assay. Conclusions: Cells differentiated from pEpiSCs, pBM-MSCs and pA-MSCs presented the functionality of different vascular ECs, demonstrating the potential of the excellent ECs differentiated from pEpiSCs.
본 연구는 한국 관속식물 적색목록(Korean National Red List)을 기준으로 정보부족(Date Deficient, DD) 종으로 분류되 어 있는 한반도 고유 식물 변산향유(Elsholtzia byeonsanensis M. Kim)의 유전자원 보존과 원예적 활용을 위해 수행되었다. 종자의 발아를 위한 적정 조건을 알아보고자 종자의 기본 특성 을 조사하고 수분 흡수율을 조사하였으며 온도, 광조건, 저온 습윤 처리, GA3 처리에 따른 발아 특성을 조사하였다. 종자의 내・외부 형태를 관찰하였을 때 완전히 성숙한 배를 가지고 있어, 형태적 휴면(morphological dormancy, MD)은 없다고 판단 하였다. 또한 수분 흡수 실험의 결과 3시간 만에 80%를 초과하 였기에 물리적 휴면(physical dormancy, PY)도 없다고 판단 하였다. 4, 15/6, 20/10, 25/15℃의 4가지 온도에서 종자 발아 를 관찰하였을 때 발아율은 각각 23.37, 71.24, 72.16, 70.93% 였다. 광조건을 달리하여 25/15℃에 배양하였을 때, 명조건에 서 암조건 보다 발아율 유의하게 높았다(p<0.001). 4℃에서 0, 4, 8, 12주간 저온 습윤 처리 후 25/15℃에 배양하였을 때, 발아율이 각각 63.75, 76.28, 83.33, 75.01%로 8주간 저온 습윤 처리 한 종자의 발아율이 가장 높았다(p<0.05). 또한 저온 습윤 처리를 한 종자는 저온 습윤 처리 기간 중에도 발아하는 모습이 관찰되며 발아소요일수가 단축되었다. 그러나 GA3를 0, 10, 100, 1000mg·L-1의 농도로 종자에 처리하였을 때, 농도에 따른 발아소요일수와 발아율의 유의한 차이는 없었다. 따라서 변산향유 종자는 대부분 비휴면(non-darmanct, ND) 종자이 나 일부 적정 조건에서도 발아하지 않은 종자의 경우, 개체군 수준에서 휴면이 있을 수 있다. 또한 종자의 발아 특성은 기존의 동일 속이나 종 내의 연구 결과와 다를 수 있음을 고려해야한다.
Non-human primates, due to their high genetic similarity to humans, are used as laboratory animals in biotechnology researches. The growing demand has recently led to a shortage of primate resources, which has become a significant issue both domestically and internationally. This shortage has been further exacerbated by the COVID-19 pandemic. Consequently, the importance of resource conservation through effective primate management is increasing. This requires the establishment of proper quarantine procedures and infectious disease control. Quarantine is an important process that protects not only animal health but also public health significance. Non-human primate quarantine procedures were organized in order. We compared the differences in quarantine procedures not only in Korea but also in various countries such as the US, EU, and Australia. In addition, the etiology, clinical symptoms, diagnosis, and treatment methods of representative infectious diseases of quarantine concern (tuberculosis, monkeypox, monkey immunodeficiency virus, salmonellosis, and shigellosis) were summarized. A literature review of nonhuman primate quarantine procedures in other countries revealed minimal differences in the basic structure. The quarantine periods were similar around 30 days, but we found some differences in details such as legal requirements, documentation forms, and quarantine authorities. These findings are expected to contribute to the development of strategies for improving methods to prevent the spread of infectious diseases and enhancing quarantine management methods.
This study investigates the performance characteristics of electrodeposited (ED) silver nanowires (AgNWs) networks as transparent conducting electrodes (TCEs) considering Cu(In,Ga)Se2 (CIGS) thin-film solar cells. The electrodeposition process uniformly deposits silver onto a network of spin-coated AgNWs, resulting in the enlargement of individual nanowire diameters and the formation of stronger interconnections between the AgNWs. This structural enhancement significantly improves both the electrical conductivity and thermal stability of the ED AgNW networks, making them more efficient and robust for practical applications in solar cells. The study comprehensively examines the optoelectronic properties of the ED AgNW networks, encompassing total and specular transmittance, transmission haze values, and sheet resistance, with varying durations of silver electrodeposition. Additionally, this study presents the current density (J)-voltage (V) characteristics of CIGS thin-film solar cells employing the ED AgNW TCEs, revealing how electrodeposition duration impacts overall device performance. These findings offer valuable insights for optimizing TCEs in not only thin-film solar cells but also in other optoelectronic devices, highlighting the potential for improved long-term stability across various applications without compromising performance.