Buckwheat (Fagopyrum esculentum), which is a traditional Korean crop, has been known as a health food due to its rich nutrition. This study was conducted to evaluate the change in flavonoid content of flowers and seeds during post-flowering growth of Korean tartary buckwheat variety ‘Hwanggeummiso’, with the aim of providing basic data for the development of functional food and feed additive. Tartary buckwheat took 69 and 99 days from the sowing date to reach the flowering and maturity stages, respectively. As a result of examining the flavonoid components of each part of tartary buckwheat, chlorogenic acid, rutin, and isoquercitrin of flowers increased from the flowering period on 22 May (0 days after flowering) to 42 days after flowering, while quercetin increased until 21 days after flowering and then decreased thereafter. In seeds, chlorogenic acid, rutin, and isoquercitrin were most abundant at the time of seed-bearing on 14 days after flowering, and showed a decreasing tendency thereafter. On the other hand, quercetin showed a tendency to increase until 21 days after flowering and then decrease. Overall, the flavonoid content was higher in flowers than in seeds, with rutin being particularly prominent. Based on this, the possibility as food materials and feed additives was confirmed using buckwheat produced in Korea.
본 연구는 논과 밭에서 재배한 18개 사일리지용 옥수수 품종들 의 생육특성, 수량성 및 사료 가치를 비교 분석하기 위하여 수행하 였다. 논과 밭에서 출사일수는 조숙종인 신황옥이 78일로 가장 짧 았고, 강다옥이 92일로 가장 길었다. 그리고 논과 밭의 출사 일수 차이는 조숙종(6일)보다 중 ․ 만생종(10일)에서 더 크게 차이가 발생 하는 것을 확인하였다. 간장은 논에서 재배한 옥수수가 밭보다 5~10% 감소하였지만, 착수고율은 10~15% 증가되는 경향을 보여 주었다. 그러나 도복과 후기녹체성은 논과 밭에서의 큰 차이를 보이 지 않았다. 사일리지 사료가치를 증진시키는 옥수수의 암이삭 비율 은 신황옥이 논과 밭에서 55.5%, 47.8%로 가장 높았고, 대부분 품종들은 밭보다 논에서 10~30% 감소하는 것을 확인하였다. 또한 이삭길이도 10~25% 감소하였다. 생초수량은 다청옥이 밭에서 65,750 kg/ha, 논에서 33,880 kg/ha로 최고 수량을 보였다. 생초수 량과 유사하게 건물수량도 다청옥이 밭에서 26,910 kg/ha, 논에 서 21,670 kg/ha로, TDN수량은 밭에서 18,040 kg/ha, 논에서 14,390 kg/ha로 최고 수량을 보여주었다. 사일리지용 옥수수의 사 료 가치를 평가하기 위하여 조단백질, 전분을 종실에서 분석한 결 과 논과 밭에서 재배한 품종간의 차이는 보이지 않았다. 그리고 잎과 줄기, 종실을 이용하여 ADF와 NDF 함량을 분석한 결과 잎 과 줄기는 밭에서는 P3394, P1543 같은 수입종이, 논에서 재배할 때는 신광옥, 다안옥 같은 국산품종이 낮을 함량을 가지고 있었다. 또한 종실에서는 밭보다 논에서 ADF와 NDF 함량이 일부 품종에 서 감소하였지만, 대부분 품종에서는 큰 차이를 보이지 않았다. 따라서 논과 밭에서 재배한 옥수수 품종들의 사료 가치는 큰 차이 를 보이지 않으므로, 배수 관리 등을 통해 생육을 정상적으로 재배 한다면 논에서의 옥수수 수량성을 확보 할 수 있다고 판단된다
This study investigated on the chemical components, quality characteristics, antioxidant compounds, and activity of maize hybrids according to the cultivar, and breeding maize seeds crossed with seed and pollen parent. The moisture, crude fat, crude ash, crude protein, carbohydrate, and amylose contents of maize hybrids were significantly different among cultivars, and seeded and pollinated maize. The L-, a- and b-value of maize hybrids were 39.81~47.21, -0.01~0.55 and 5.85~18.47, respectively. Water binding capacity, water solubility index and swelling power were 123.29~153.32, 4.69~5.76 and 20.11~21.47%, respectively. The phenolic compounds and radical scavenging activity of maize hybrids were significantly different among cultivars, and seeded and pollinated maize. Total polyphenol and flavonoid contents of maize hybrids were 1,335.41~1,876.29 μg/g and 184.24~453.95 μg CE/g, respectively. The DPPH and ABTS radical scavenging activities were 171.75~239.16 and 299.44~364.09 mg TE/100 g, respectively. As a result, it could be used as a basic data for cultivating phenol compounds and antioxidant activity in maize breeding.
Single nucleotide polymorphisms (SNP) markers allow rapid screening of crop varieties in early growth stages. We developed a modified SNP PCR procedure for assaying SNPs in maize. For SNP marker development, we chosen 200 SNP sites from MaizeGDB database, and designed two base pair mismatch primers based on putative SNP site of B73 genome sequence. PCR products size was from 200 to 500 bp or was not shown in the case of SNP site existing in Korean silage corns. Using previously discovered 16 primer sets, we investigated distinctness of 50 silage F1 hybrid corns including 10 Korean silage corns developed by RDA such as Gangdaok, Kwangpyeongok, Dapyeongok, Andaok, Yanganok, Singwangok, Jangdaok, Cheongdaok, Pyeonggangok, and Pyeonganok as well as 40 foreign commercial silage corns. From cluster analysis, we confirmed that 10 Korean silage F1 hybrid corns were clearly distinguished except for Singwangok, P1395, and several foreign commercial corns, and selected minimum SNP primer combination for Gangdaok, Jangdaok, Pyeonggangok, and Pyeonganok. Therefore, development of SNP marker sets might be faster, cheaper, and feasible breed discrimination method through simple PCR and agarose gel electrophoresis.
Soybean (Glycine max (L.) Merr) is a short day plant and has been adapted to various climates and environments during cultivation. However, the cultivation area is restricted to a very narrow range of latitudes. To date, nine major genes (E1 to E8 and J) have been reported to control the flowering time and maturity. Here, we evaluated the role of E2, E3, E4, and their paralogue genes in late flowering soybean cultivars under long day (LD) conditions using Soybean yellow common mosaic virus (SYCMV)-based virus-induced gene silencing (VIGS) system. A total of nine VIGS constructs were infiltrated into two fully expanded cotyledons and primary leaves. After inoculation with these VIGS constructs on Jangyeobkong, which is a late-flowering cultivar, phenotypic traits were evaluated for the first flowering dates (FFDs) and pod maturities under LD conditions. The FFDs of the silenced plants occurred 50-56 days after sowing (das), while the non-silenced plants bloomed on 60-61 days. We found that the E3 paralogue-silenced plants flowered the fastest and responsive genes were identified to be associated with the promotion of flowering time. As the knock-down of E3 paralogue, expression of E1 was up-regulated, E2 was no difference, E3 and E4 genes were down-regulated in the silenced plants. Expression of GmFT2a and GmFT5a is known to be controlled by E3 and E4. Interestingly, GmFT5a were highly expressed in SYCMV:E3 paralogue-silenced plants, whereas the expression of GmFT2a was not significant. These results support that GmFT5a is able to independently promote flowering under LD conditions.
Understanding the response of a crop to water deficiency is the first step towards breeding drought-tolerant varieties. In this study, inbred maize (Zea mays L.) lines KS140 and KS141 were subjected to drought stress by withholding water for 10 days at the V5 or V6 leaf stage. Water-deficient plants experienced a decrease in relative leaf water content, stomatal conductance, net CO2 assimilation rate, and water use efficiency compared to well-watered plants. This was accompanied by a decrease in the relative leaf water content that resulted in severe growth retardation in KS140 and KS141. However, leaf chlorophyll content in KS140 was unchanged. To understand the proteome dynamics during the 10-day drought stress in maize leaves, comparative proteome analysis was carried out between the well-watered and water-withheld leaves. Differential expression was observed for 29 protein spots from KS140 and 14 protein spots from KS141, and these were identified using MALDI-TOF mass spectrometry. Among identified proteins, metabolism and stress related proteins were highly were increased by drought stress. This study provides a protein profile of a Korean maize inbred line during drought stress, which will be valuable for future studies of the molecular mechanisms underlying drought resistance and for development of selective breeding markers for drought tolerance in maize.