검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Seeds of some barberry species have embryo with physiological dormancy that requires a cold stratification for germination. Berberis amurensis Rupr. is a native species of Japan, Korea, the Russian far east, and parts of China. This specific plant is important for its edible fruits and rhizomes with high medicine value. This study aimed to determine the effect of stratification on germination and physiological change of B. amurensis. Seeds were placed on sterilized sand medium moistened with distilled water in 9 cm diameter petri dishes and stored at 4 and 25˚C for 0, 15, 30, 45 and 60 days. Each treatment had 40 seeds per replica, and three repetitions per treatment. Immediately after stratification, total phenolics contents (TPC) was analyzed and seeds incubated at 15/6˚C for 12 weeks. Warm stratification had a significant effect on seed forcing for germination than cold stratification treatment. At 25˚C for 60 days, stratified seed showed highest germination percentage (25.7±4.3%) and germination started in 14 days of the stored period. Whereas TPC was significantly decreased with increasing stored period. Contrastively, cold stratification had no effect on the germination ability. In the same way germination percentage of non-stratified seeds were also zero. The results confirmed that B. amurensis seeds were in a dormant state and warm stratification increased the germination ability by breaking of dormancy.
        4,000원
        2.
        2023.11 구독 인증기관·개인회원 무료
        The radiological characterization of SSCs (Structure, Systems and Components) plays one of the most important role for the decommissioning of KORI Unit-1 during the preparation periods. Generally, a regulatory body and laws relating to the decommissioning focus on the separation and appropriate disposal or storage of radiological waste including ILW (intermediate level waste), LLW (low level waste), VLLW (very low level waste) and CW (clearance waste), aligned with their contamination characteristics. The result of the preliminary radiological characterization of KORI Unit-1 indicated that, apart from neutron activated the RV (reactor vessel), RVI (reactor vessel internals), and BS (biological shielding concrete), the majorities of contamination were sorted to be less than LLW. Radiological contamination can be evaluated into two methods. Due to the difficulties of directly measuring contamination on the interior surfaces of the pipe, called CRUD, the assessment was implemented by modeling method, that is measuring contamination on the exterior surfaces of the pipes and calculating relative factors such as thickness and size. This indirect method may be affected by the surrounding radiation distribution, and only a few gamma nuclides can be measured. Therefore, it has limitation in terms of providing detailed nuclide information. Especially, α and β nuclides can only be estimated roughly by scaling factors, comparing their relative ratios with the existing gamma results. To overcome the limitation of indirect measurement, a destructive sampling method has been employed to assess the contamination of the systems and component. Samples are physically taken some parts of the systems or components and subsequently analyzed in the laboratory to evaluate detailed nuclides and total contamination. For the characterization of KORI Unit-1, we conducted the radiation measurement on the exterior surfaces of components using portable instruments (Eberline E-600 SPA3, Thermo G20-10, Thermo G10, Thermo FH40TG) at BR (boron recycle system) and SP (containment spray system) in primary system. Based on these results, the ProUCL program was employed to determine the destructive sample collection quantities based on statistical approach. The total of 5 and 8 destructive sample quantities were decided by program and successfully collected from the BR and SP systems, respectively. Samples were moved to laboratory and analyzed for the detail nuclide characteristics. The outcomes of this study are expected to serve as valuable information for estimating the types and quantities of radiological waste generated by decommissioning of KORI Unit-1.