상록바위솔속(Sempervivum)은 돌나물과(Crassulaceae)에 속한 하위 속이며 유라시아와 일부 북아프리카에서 분포한다. 상록바위솔속 식물들은 과거 여러 연구에서 약용작물로 활용될 수 있는 가능성을 나타내었다. 그뿐만 아니라 상록바위솔속 식물은 관상용 식물로도 선호된다. 식물의 관상가치를 높이고 적합한 실내 재배조건을 확립하기 위해 적절한 광조건에 대한 연구가 필요하다. 이에 따라 본 연구에서는 시중에서 쉽게 구할 수 있는 상록바위솔 ‘블랙탑’(Sempervivum ‘Black Top’)을 실험식물로 공시하였으며, 실내재배에서 세 가지 LED 광질에 따른 ‘블랙탑’의 생장에 미치는 영향을 분석하기 위해 18주 이후의 생장 결과를 조사했다. 결과적으로 ‘블랙탑’의 초장은 3000 K 백색 LED (peak 455, 600 nm)에서 가장 큰 것으로 나타났다. 그리고 엽장은 보라색 LED (peak 450, 650 nm)가 가장 큰 것으로 나타났다. 그러나 반대로 엽폭에서는 유의미한 차이가 없는 것으로 나타났다. 한편, 생체중은 6500 K 백색 LED (peak 450, 545 nm)에서 가장 높은 것으로 나타났으며 건물중은 3000 K 백색 LED와 6500 K 백색 LED가 동등한 유의수준을 가지는 것으로 나타났다. 엽록소 수치는 6500 K 백색 LED에서 가장 높게 나타났고 보라색 LED에서는 가장 낮게 나타나 엽록소 수치를 증대시키기 위해서는 분광분포가 균일한 것이 좋은 것으로 나타났다. 이와 연쇄적으로 CIELAB 엽색분석에서 명도를 나타내는 L*은 보라색 LED에서 가장 높게 나타나 스펙트럼이 한 쪽으로 편중될 경우 ‘블랙탑’ 엽색 품질 관리에 불리한 것으로 나타났다. 결과적으로, 위 조사항목들에 대하여 복합적으로 고려할 때 ‘블랙탑’의 생장 촉진과 엽색 품질의 증대를 위해 보라색 LED가 아닌 3000 K 백색 LED 혹은 6500 K의 백색 LED 하에서 재배할 것을 권고한다.
본 연구는 고온과 연속광 조건 하의 복합 스트레스 환경에서 실내 관엽식물이 어떤 엽록소 형광 반응을 나타내는지에 대해 조사 및 분석했다. 대부분의 실내 관엽식물은 이와 같은 스트레스 조건에서 광도가 높아질수록 Fo, Fj 단계에서 형광 밀도가 증가하고 Fi, Fm 단계에서 형광 밀도가 감소한 것으로 나타나 광계II의 반응중심에 있는 전자수용체 퀴논의 상당량이 환원상태에 놓여있음을 암시했다. 뿐만 아니라 최대 양자효율과 최대 양자수율을 나타내는 Fv/Fm와 ΦPo는 광도가 높아질수록 낮게 나타났고 반대로 에너지 소산을 나타내는 DIo/RC 값은 광도가 높아지는 것에 비례하여 높게 나타났다. 이를 미루어보아 고광도 수준에서는 대부분의 광자가 제대로 활용되지 못했음을 알 수 있었다. 특히나 아이비와 테이블야자 는 고온 및 연속광 조건에서 현저한 스트레스를 받는 것으로 분석되었는데 이와 같은 스트레스 조건의 실내에서 재배할 경우 60 μmol m-2 s-1의 저광도 수준에서 재배하는 것이 바람직한 것으로 보인다. 반대로 무늬스킨답서스와 관음죽은 스트레스를 비교적 적게 받는 것으로 나타나 고온과 연속광 조건하에서도 광도의 세기와는 무관하게 양호한 생육이 가능할 것으로 판단된다.
High voltage electric power transmitter GIS(Gas Insulated Switchgear) above 72.5kV needs to satisfy domestic Korean peninsular standard(ES-6110-0002) in KEPCO with respect to normal and special operation conditions which include internal gas pressure, dead weight, wind and seismic load. Some other requirements not described in Korean standard can be applied from other international standards such as IEC(International Electronical Committee) 62271-203 and 62271-207. The GIS is a kind of pressure vessel structure made of aluminum and filled with SF6 gas of internal pressure 0.4~0.5MPa. Finite element analysis of GIS is performed with such operational loads including seismic loading and the stability and reliability is determined according to ASME BPVC(Boiler and Pressure Vessel Code) SEC. VIII standard where the allowable stress level of the pressure vessel is suggested. The result shows that the stress of GIS is satisfied the allowable stress level and the safety factor is about 2.3 for Korean peninsular standard.
본 논문에서는 국내 선박해양플랜트연구소에 구축된 빙해수조의 빙특성 중에서 모형빙의 두께와 유효탄성계수 산출과정이 소개되었다. 수조에서 결빙되는 빙판은 크기가 가로 세로각각 30 m 정도에 두께는 40mm정도이다. 모형선의 실험결과를 쇄빙선 설계에 사용하기 위하여 빙 특성 정보가 필요하다. 사람이 빙판을 일부 절개하고 일일이 손으로 두께를 측정하는 것을 지양하기 위하여 초음파 기기를 사용하였는데 저주파 장비를 사용하여 작은 샘플 모형빙에 대한 두께는 계측되었다. 하지만 완벽한 계측을 위해서는 송수신 일체형 저주파 센서나 정확한 위치가 설정된 분리형 센서 혹은 고가의 특수 장치가 필요함을 확인하게 되었다. 한편 빙판의 처짐량을 간이식 LVDT로 계측하고 이를 탄성체 위에 놓인 무한 판의 특성길이 관계식에 대입하여 빙의 유효탄성계수를 산출하였는데 외국의 결과와 유사함이 입증되었다.
본 논문에서는 Pothead를 지지하는데 사용하는 지그의 고유진동수를 일정 범위로 제한하여 Pothead와 공진을 일으키지 않도록 하는 지그의 최적 설계안을 제시한다. 쿤 터커(Kuhn-Thucker) 조건을 적용한 최적기준법(Optimality criteria method)을 사용하여 위상 최적화를 수행하였고, 이 과정에서 유한요소 크기기 최적 형상에 미치는 영향을 검토하였다. 또한 위상 최적화 결과를 바탕으로 실험 계획법(Design of experiments)과 반응 표면법(Response surface method)을 사용하여 형상 및 치수 최적화를 수행하여 비교용 지그에 비해 전체 질량이 30% 감소되는 결과를 얻었다. 마지막으로 최적화된 지그의 내진 해석을 수행한 Pothead의 응답은 Metal Handbook에서 제시된 내진 응답을 만족하고 있다.
본 연구에서는 감귤 과피 가공부산물로부터 기능성 polyphenol 및 flavonoid가 새로운 추출방법인 아임계 추출법을 통해 추출되었고, 열수(80oC), 에탄올, 설탕용액을 이용한 기존 추출법과의 추출효율이 비교 분석되었다. 건조된 감귤 과피로부터 총 polyphenol(27.25±1.33 mg QE/g DCP) 및 flavonoid(7.31±0.41 mg QE/g DCP)에 대한 최대 수율이 아임계 추출법(190°C, 1300 psi, 10 min)을 통해 획득되었으며, 이것은 기존 추출법 가운데 가장 높은 수율을 보인 에탄올 추출법을 통한 총 polyphenol(3.79±0.73 mg QE/g DCP) 및 flavonoid(0.86±0.27 mg QE/g DCP) 수율 대비 7.2배와 8.5배 이상 더 높은 것이었다. 추출방법에 따른 감귤 과피 추출물의 항산화 활성은 큰 차이를 나타내지 않았으나, 이러한 결과는 건조 감귤 과피 1 g 당 아임계 추출법(190oC, 1300 psi, 10 min)에 의한 항산화 성분의 상대 수율(relative yield, %)이 다른 추출방법을 통해 획득된 것보다 대략 9.5배 이상 더 높다는 것을 설명하는 결과로, 아임계 추출법이 기존의 전통적 추출법에 비하여 감귤 과피의 기능성 polyphenol 및 flavonoid를 추출하는데 매우 적합한 방법임을 제시하고 있다.