In this study, we examined the effects of gamma irradiation dosage on the mycelial growth of Auricularia auriculajudae and performed analyses of fruiting body yield, growth characteristics, taste, fragrance, and mineral composition. Assessments of mycelial growth in response to gamma irradiation at different intensities revealed an enhancement in the growth of fungi exposed to irradiation at 200 Gy. Fruiting body yield was also highest at 200 Gy, followed by 800 Gy and the control group. On the basis of these observations, we subsequently applied gamma ray doses of 200 and 800 Gy to examine the effects of irradiation on fungal quality characteristics. In terms of the taste of fruiting bodies, we detected no significant differences among the control, 200 Gy, and 800 Gy groups. Contrastingly, with respect to fragrance, we found that fungi treated with 200 Gy were characterized by a pattern that differed from those of the control and other treatment groups. Furthermore, whereas we detected no significant difference among treatments with respect total dietary fiber content, calcium content was found to be higher in the treatment groups compared with the control group, with the highest content being measured in fungi exposed to 800 Gy irradiation. Copper content was confirmed to be higher in the control group, whereas there were no significant differences between the fungi irradiated with 200 and 800 Gy. Contrastingly, the highest levels of zinc were detected in response to 200 Gy irradiation, followed by 800 Gy. Collectively, our findings thus indicate that gamma irradiation can contribute to promoting increases in the fruiting body yield and mineral contents of mushrooms.
This study was developed to recognize the occurrence of 250[m] of experimental distance, rain and nighttime as an educational and training device without any safety accidents by applying algorithms to optical filters and noise filters to be used in all weather environments and closest to actual shooting training using IR Laser. There are live-fire shooting using live ammunition, screen shooting using beam project and screen, MILES using IR Laser and sensor, BB shooting using compressed gas and BB bullet, and painting shooting using CO2 gas and paint bullet. Among them, the actual shooting training is not efficient in terms of management and operation because it requires considerable risk factors and large costs in preparation for the highest efficiency. Therefore, training that replaces these problems is needed, and various alternative shooting training is being implemented. Therefore, research and development was conducted to solve these problems by using it as one of efficient shooting training and education systems. This study was conducted to develop high-performance and low-cost precision shooting training equipment to contribute to strengthening the defense of the Republic of Korea.
Waste gasification can generate hydrocarbon gases that may be utilized for the synthesis of chemicals or liquid fuels, or for fuel cell power generation, if extensive, deep syngas cleaning is initially conducted. Conventional gas cleaning technology for such applications is expensive and may limit the feasibility of wet technology. Conventional cold gas cleanup (scrubbing by solvents) technique needs the temperature of raw waste gasification gas ranging from 900 to 1600℃ reduced to room temperature. Then, the cleaned - up syngas needs to be reheated. Obviously, the process is energetically inefficient. It is the objective of this study to economically meet the most stringent cleanup requirements without reheating syngas for these applications. We investigated the temperature and pressure effect in breakthrough performance of various sorbents for desulfurization and de-chlorination. Based on the results obtained during the desulfurization (Fe₂O₃, Fe₃O₄, ZnO) and the dechlorination (Na₂CO₃, NaHCO₃, Na₂O) screening tests, ZnO and Na₂O were selected as preferred optimum sorbents. H₂S breakthrough time corresponds to an effective capacity of approximately 11 g Cl/100 g of material. Also, HCl, breakthrough time corresponds to an effective capacity of approximately 5 g Cl/100 g of material. ZnO and Na₂O at high temperature of around 550℃ display high sorption performance and removal efficiency for waste syngas along with H₂S and HCl. Although there is an issue of CO₂ recovery in warm gas clean-up technology for desulfurization, we have obtained an interesting new alternative warm gas clean-up system with heat budget merit.
This work presents an experimental study of the influence of lifting velocity on cake formation during filtration. For design of hot gas cleanup system using ceramic filter reactor, the most important consideration is coating conditions of sorbent in filter surface (for example : lifting velocity, coating weight of sorbent, pulsing interval and removal effect for dechlorination and desulfurization). We studied the optimum operation condition as paticle size and lifting velocity using a ceramic filter reactor at 550oC. Based on the results obtained during cold and hot test, optimum lifting velocity in a ceramic filter reactor was selected 0.68 m/s. Also, the removal behaviour of the ceramic filter during filtration was studied using differential pressure. Optimum removal efficiency for dechlorination and desulfurization accomplished at differential pressure condition over 74 mmH2O.
We investigated the effect of temperature and pressure in breakthrough performance of various sorbents for dechlorination and desulfurization. Based on the results obtained during the desulfurization (Fe2O3, Fe3O4, ZnO) and the dechlorination (Na2CO3, NaHCO3, trona) screening tests, ZnO and trona were selected as preferred optimum sorbents. H2S breakthrough time corresponds to an effective capacity of approximately 11 g H2S/100 g of sorbent. Also, HCl breakthrough time corresponds to an effective capacity of approximately 5 g HCl/100 g of sorbent. ZnO and trona at high temperature of around 550oC display high sorption performance and removal efficiency for synthsis gas from waste gasification. Although there is an issue of CO2 recovery in hot gas cleanup technology for desulfurization, we have obtained an interesting new alternative hot gas cleanup system with heat budget merit.