In the event of a radioactive release, it is essential to quickly detect and locate the source of the release, as well as track the movement of the plume to assess the potential impact on public health and safety. Fixed monitoring posts are limited in their ability to provide a complete picture of the radiation distribution, and the information they provide may not be available in real-time. This is why other types of monitoring systems, such as mobile monitoring, aerial monitoring, and personal dosimeters, are also used in emergency situations to complement the information provided by fixed monitoring posts. Also, the monitoring system can be improved by using the Kriging technique, which is one of the interpolation methods, to predict the radiation dose in the relevant districts. This can be achieved by utilizing both the GPS information and the radiation dose measured at a particular point. The Kriging method involves estimating the value between different measurement points by considering the distance between them. The model used GPS and radiation data that were measured around the Hanbit NPP. The data were collected using a radiation measuring detector on a bus that traveled around the NPP area at 2-second intervals for one day. From the collected data, 200 data points were randomly selected for analysis, excluding the data measured at the bus garage out of a total of 16,550 data points. The average dose of the daily measurement data was 117.94 nSv/h, and the average dose of the 200 randomly extracted data was 119.17 nSv/h. The GPS and radiation dose data were utilized to predict the radiation dose around the Yeonggwang area where the Hanbit NPP is located. In the event of an abnormal release of radioactive material, it can be difficult to accurately determine the dose unless a monitoring measurement point is present. This can delay the rapid evacuation of residents during an emergency situation. By utilizing the Kriging model to make predictions, it is anticipated that more accurate dose predictions can be generated, particularly during accident scenarios. This can aid in the development of appropriate resident protection measures.
Republic of Korea (ROK) is operating the Integrated Environmental Radiation Monitoring Network (IERNet) in preparation for a radioactive emergency based on Article 105 of the Nuclear Safety Act (Monitoring of Nationwide Radioactive Environment). 215 radiation monitoring posts are monitoring a wide area, but their location is fixed, so they can’t cover areas where the post is not equipped around the Nuclear Power Plants (NPPs). For this, a mobile radiation monitoring system was developed using a drone or vehicle. However, there are disadvantages: it is performed only at a specific cycle, and an additional workforce is required. In this study, a radiation monitoring system using public transportation was developed to solve the above problems. Considering the range of dose rates from environmental radiation to high radiation doses in accidents, the detector was designed by combining NaI (TI) (in the low-dose area) and GM detector (in the high-dose area). Field test was conducted by installed on a city bus operated by Yeonggwang-gun to confirm the performance of the radiation monitoring system. As a result of the field test, it was confirmed that data is transmitted from the module to the server program in both directions. Based on this study, it will be possible to improve the radiation monitoring capability near nuclear facilities.
Once a radioactive material is released from the nuclear power plant (NPP) by accident, it is necessary to understand the behavior of radioactive plume to protect residents adequately. For this, it is essential to measure the radiation dose rate around NPPs at important locations. Our previous study developed a movable radiation detector that can be installed quickly in an accident to measure gamma dose rate in areas where environmental radiation monitoring system is not installed. The data measured by the detector are transmitted to the server in real-time through LoRA wireless communications. There are two methods to use LoRA communications; one is self-network, and the other is the network provided by the mobile carrier. A signal receiver, called a gateway, should be equipped near the installation location of radiation detectors to use a self-network without using the mobile carrier’s system. In other words, the movable radiation detectors we made can function if there should be any gateway near them. The distance capable of communication between gateway and detector is about 8 km in an open area without significant obstacles. Korea has many significant obstacles, such as mountains around most NPPs. Thus, the gateways could be installed in the proper position before the accident to operate the movable radiation detectors without problems. If the gateway is located at a high position like a mountain top, it could cover a wide area. In this study, the elevation database in the area around the NPPs was collected and analyzed to determine where gateways should be installed. The analysis range is limited in the urgent protective action planning zone. The optimization was also performed to minimize the number of gateways.
PURPOSES : This paper presents a description of the current issues facing road managers regarding the surface-type conversion of lowvolume roads for cost savings.
METHODS: The paper reviews previous works conducted toward this end, acknowledges gaps in the current research, and lays out what information is needed for further studies.
RESULTS : If the cost to maintain an unsurfaced road is less than the cost of maintaining a surfaced road, then there is potential for cost savings for the management agency. However, the problem is bigger than simply maintaining the roads that already exist. If unsurfaced roads prove to be more economical than surfaced roads, then the cost to convert from a surfaced to an unsurfaced roadway, and vice versa, when necessary, must also be examined.
CONCLUSIONS : No other studies have addressed the un-surfacing of a road for cost savings, and it is therefore unknown whether substantial savings can be realistically obtained by converting from a surfaced to an unsurfaced road. To determine whether a conversion policy would be a viable option, additional data and research are needed.
Background : This study was conducted to determine the optimal ginseng greenhouse shading material for minimizing heat injury and maximizing the yield of ginseng plants in an effort to develop a stable ginseng cultivation technology and contribute to popularizing ginseng greenhouse farming. Methods and Results : Three different types of greenhouse shading material were used: polyethylene (PE) film + black screen (95%), light scattering film + black screen (75%), and blue-white vinyl. Important experimental details were implemented in accordance with the Analysis Standard of Agricultural Test and Research set out by the Rural Development Administration. The average greenhouse temperature for the period of May through October was 20.0℃ under the PE film + black screen, 20.2℃under the light scattering film + black screen, and 19.7℃ under the blue/white vinyl. High average photosynthesis rates of ginseng plants were demonstrated by light scattering film+black screen (2.35 μmole CO2/㎡/s) and blue-white vinyl (2.38 μmole CO2/㎡/s), with the PE film + black screen showing a considerably lower photosynthesis rate (1.55 μmole CO2/㎡/s). Heat injury occurred in 0.3%, 10%, and 0.1% of the plants grown under the PE film + black screen, light scattering film + black screen, and blue-white vinyl, respectively. As for the roots, the blue-white vinyl outperformed the other shading materials in root length (25.7 ㎝), taproot length (5.9 ㎝), and the number of fine roots (23.2). The blue-hite vinyl also yielded the greatest root fresh weight (30.2 g), followed by the light scattering film + black screen (29.1 g), with the PE + black screen yielding by far inferior average weight (22.0 g). The highest crude saponin content was yielded by the light scattering film+black screen (16.61 ㎎/g), followed by blue-white vinyl (11.36 ㎎/g) and PE + black screen (11.0 ㎎/g). Conclusion : Comparing the effects of three different shading materials on greenhouse-cultivated 3-year-old ginseng plants, the blue/white vinyl outperformed two other shading materials in most of the growth characteristics, whereas the and the light scattering film + black screen yielded the highest ginsenoside content.
“Younbaek”, a new noodle making wheat cultivar, was developed from the cross between “Keumkang” with white grain color and “Tapdongmil” by the Honam Agricultural Research Institute(HARI), National Institute of Crop Science (NICS), RDA, Korea in 2005. Amon
“Jokyoung”, a new bread making wheat cultivar, was developed from the cross between “Seri 82”, a hard white wheat from CIMMYT, Mexico and “Keumkang”, a hard white wheat with high milling rate and early maturing from Korea by National Institute of Crop Sci