검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 167

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study evaluated the immunogenicity of the Bacillus Calmette-Guérin (BCG) vaccine in a guinea pig model to refine preclinical assessment methods. 24 guinea pigs were divided into four groups for immunohistochemical, histopathological, and molecular analyses, including qRT-PCR and ELISA. The ELISA results revealed significant elevations in interleukin 2 (IL-2), interferon-gamma (IFN- ), and tuberculosis-specific antibodies in vaccinated guinea pigs, particularly γ notable after 6 weeks. Although lung cytokine levels remained unchanged, spleen gene expression showed significant differences in interleukin-17, interleukin-12, interleukin-1β, and C-X-C motif chemokine ligand 10 after 6 weeks. Immunohistochemistry revealed peak IL-2 expression at 8 weeks and significant IFN-γ and TNF-α expression at 6 weeks. This study confirmed the effectiveness of BCG vaccine in guinea pigs, providing crucial insights for future tuberculosis vaccine development and standardizing immune response indicators.
        4,000원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구는 초분광 영상으로 두 품종의 콩(청자 3호, 대찬)의 들불병을 진단할 수 있는 모델과 다중분광 영상센서를 개발하기 위해 수행되었다. 무처리구와 들불병 처리구에서 5 nm full width at half maximum (FWHM)으로 구성된 원시 초분광 중심파장들의 콩 식물 영역 반사율들을 추출하여 10 nm FWHM으로 병합한 후, t-test로 차이가 나타난 blue, green, red, red edge, NIR1 및 NIR2 각 영역에서 선정된 대표 밴드로 121개의 식생지수를 계산하였다. 식생지수를 입력변수로 support vector machine (SVM), random forest (RF), extra tree (EXT), extreme gradient boosting (XGB)의 머신러닝 기법과 shapley additive explanation 변수 선택 기법을 적용하여 들불병 진단에 가장 적절한 모델을 선정하고 사용된 식생지수와 파라미터를 나타내었다. T-test 결과 품종에 상관없이 blue 1개(420 nm), green 2개(500, 540 nm), red 1개(600 nm), red edge 2개(680, 700 nm), NIR1 2개(780, 840 nm), NIR2 1개(920 nm)의 총 9개 대표 밴드들이 선택되었고, 성능 평가를 통해 선정된 모델에 청자 3호의 경우 SVM모델(OA=0.86, KC=0.72, 10 VIs)이 선정되었으나 혼동행렬 분석 결과 정상오분류가 적은 RF모델이 선택되었다. RF모델(식 생지수 : RE/Blue, NSI, GDVI, Green/Blue, 파라미터 : max_depth=6, n_estimators=100)은 OA=0.81, KC=0.60, precision=0.86, recall=0.81, F1 score=0.80의 성능을 나타내었다. 대찬은 EXT모델(식생지수 : YVI, RE/Green, 2YVI, 파라미터 : max_depth=8, n_estimators=10)이 선정되 었고, OA=0.86, KC=0.72, precision=0.86, recall=0.86, F1 score=0.86의 성능을 나타내었다.
        4,600원
        9.
        2023.11 구독 인증기관·개인회원 무료
        The development of separation method of radioactive tritium is imperative for treating tritiumcontaminated water originating from nuclear facilities. Polymer electrolyte membrane electrolysis technology represents a promising alternative to conventional alkaline electrolysis for tritium enrichment. Nevertheless, there has been limited research conducted thus far on the composition of membrane electrode assemblies (MEAs) specifically optimized for tritium separation, as well as the methods used for their fabrication. In this study, we conducted an investigation aimed at optimizing MEAs specifically tailored for tritium separation. Our approach involved the systematic variation of MEA components, including the anode, cathode, porous transport layer, and electrode formation method. The water electrolysis efficiency and the H/D separation factor in deuterated water (1%) were evaluated with respect to both the preparation method and the composition of the MEA. To assess the long-term stability of the MEAs, changes in cell voltage, resistance, and the active electrode area were analyzed using impedance analysis and cyclic voltammetry. Furthermore, we examined H/D separation factor both before and after degradation. The results showed that MEAs with different anode/cathode configurations and electrode formation methods improved the electrolysis efficiency compared to commercial MEAs. In addition, the degree of change in the resistance value was also different depending on the electrode formation method, indicating that the electrode formation method has a significant impact on the stability of the electrolysis system. Therefore, the study showed that the efficiency and long-term stability of the water electrolzer can be improved by optimizing the MEA fabrication method.
        10.
        2023.05 구독 인증기관·개인회원 무료
        For decontamination and quantification of trace amount of tritium in water, an efficient separation technology capable of enriching tritium in water is required. Electrolysis is a key technology for tritium enichment as it has a high H/T and D/T separation factors. To separate tritium, it is important to develop a proton exchange membrane (PEM) electrolyzer having high hydrogen isotope separation factor as well as high electrolyzer cell efficiency. However, there has not been sufficient research on the separation factor and cell efficiency according to the composition and manufacturing method of the membrane electrode assembly (MEA) Therefore, it is necessary to study the optimal composition and manufacturing method of the MEA in PEM electrolyzer. In this study, the H/D separation factor and water electrolysis cell efficiency of PEM electrolyzer were analyzed by changing the anode and cathode materials and electrode deposition method of the MEA. After the water electrolysis experiment using deionized water, the D/H ratio in water and hydrogen gas was measured using a cavity ring down spectrometer and a mass spectrometer, respectively, and the separation factor was calculated. To calculate the cell efficiency of water electrolysis, a polarization curves were obtained by measuring the voltage changes while increasing the current density. As a result of the study, the water electrolyzer cell efficiency of the MEA fabricated with different anode/cathode configurations and electrode formation methods was higher than that of commercial MEA. On the other hand, the difference in H/D separation factor was not significant depending on the MEA fabrication methods. Therefore, using a cell with high cell efficiency when the separation factor is the same will help construct a more efficient water electrolysis system by lowering the voltage required for water electrolysis.
        18.
        2022.05 구독 인증기관·개인회원 무료
        At high temperatures, molten salt has heat transfer properties like water. Molten salt has the characteristics of a strong natural circulation tendency, large heat capacity, and low thermal conductivity. Unlike sodium, molten salt does not react explosively exothermically with air. However, molten salt has a strong tendency to corrode materials, and its properties are easily changed by a sensitive reaction to oxygen and moisture. Therefore, it is necessary to study material corrosion properties and chemical control methods for nuclear fuel salts, which are eutectic mixtures. In this study, the optimal operation method of the thermal convection loop is established to perform the experiments on the molten salt. The process describes briefly as follows. The operation step consists of preparation, purification, transportation, and operation. In the preparation, the step checks the entire structure and equipment (TC, blower, vacuum pump, etc.). And melt the salt mixture at a high temperature (670°C) slowly in the purification step. Before injecting the molten salt, the surface temperature of the entire loop must retain temperature (about 500°C) constantly. Completely melted molten salt in the melting pot is flow along the pipe of the thermal convection loop in the transportation step. Lastly, the convection of molten salt goes to keep by the temperature difference. The thermal convection loop can be utilized for various experiments such as corrosion tests, component analyses, chemistry control, etc.
        19.
        2022.05 구독 인증기관·개인회원 무료
        Molten salt used in the multipurpose molten salt experiment must be of high purity. Depending on the purpose of the experiment, only the base component of the molten salt be used, or a component simulating a nuclear fission product be added to the base component and used. In all cases, an increase in the concentration of impurities such as oxygen and moisture may lead to an erroneous interpretation when analyzing the experimental results. Therefore, molten salt should be purified before use. In this study, the purification of molten salt is described for multi-purpose molten salt experiments. The salt mixture is selected as MgCl2-NaCl and is quantified at a mixing ratio of 43mol%:57mol%. The salt mixture is treated in a glove box environment because of must minimize the reaction of adsorbing oxygen and moisture when the salt mixture is exposed to the atmosphere. MgCl2 is more likely to contain water than NaCl, the purification of the NaCl-MgCl2 mixture is established according to the purification process for removing water from MgCl2. A process for purifying the salt mixture briefly consists as follows: drying moisture, melting salts, purification, removing HCl, and stabilization. Through the process be able to obtain high-purity molten salt and more accurate experiment results.
        20.
        2022.05 구독 인증기관·개인회원 무료
        In this study, an aerosol process was introduced to produce CaCO3. The possibility of producing CaCO3 by the aerosol process was evaluated. The characteristics of CaCO3 prepared by the aerosol process were also evaluated. In the CaCO3 prepared in this study, as the heat treatment proceeded, the calcite phase disappeared. The portlandite phase and the lime phase were formed by the heat treatment. Even if the CO2 component is removed from the calcite phase, there is a possibility that the converted CO2 component could be adsorbed into the Ca component to form a calcite phase again. Therefore, in order to remove the calcite phase, carbon components should be removed first. The lime phase was formed when CO2 was removed from the calcite phase, while the portlandite phase was formed by the introducing of H2O to the lime phase. Therefore, the order in which each phase formed could be in the order of calcite, lime, and portlandite. The reason for the simultaneous presence of the portlandite phase and the lime phase is that the hydroxyl group (OH−) introduced by H2O was not removed completely due to low temperature and/or insufficient heating time. When the sufficient temperature (900°C) and heating time (60 min) were applied, the hydroxyl group (OH−) was removed to transform into lime phase. Since the precursor contained the hydrogen component, it could be possible that the moisture (H2O) and/or the hydroxyl group (OH−) were introduced during the heat treatment process.
        1 2 3 4 5