검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 204

        1.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The initial development plans for the six reactor designs, soon after the release of Generation IV International Forum (GIF) TRM in 2002, were characterized by high ambition [1]. Specifically, the sodium-cooled fast reactor (SFR) and very-high temperature reactor (VHTR) gained significant attention and were expected to reach the validation stage by the 2020s, with commercial viability projected for the 2030s. However, these projections have been unrealized because of various factors. The development of reactor designs by the GIF was supposed to be influenced by events such as the 2008 global financial crisis, 2011 Fukushima accident [2, 3], discovery of extensive shale oil reserves in the United States, and overly ambitious technological targets. Consequently, the momentum for VHTR development reduced significantly. In this context, the aims of this study were to compare and analyze the development progress of the six Gen IV reactor designs over the past 20 years, based on the GIF roadmaps published in 2002 and 2014. The primary focus was to examine the prospects for the reactor designs in relation to spent nuclear fuel burning in conjunction with small modular reactor (SMR), including molten salt reactor (MSR), which is expected to have spent nuclear fuel management potential.
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 환경교육용 보드게임 개발에 관한 연구다. 이를 위해 문헌 고찰과 전문가 인터뷰를 실시하여 핵심 메커니즘과 용어를 도출하였다. 또한, 타당도와 신뢰도 검증을 위하여 델파이 조사를 진행하였다. 연구 결과 9개 항목에 대하여 합의가 이뤄졌으며, 이를 기반으로 ‘수풀로 메이커’ 프로토타입을 제작하고 플레이테스트 를 진행하였다. 그 결과, 환경에 대한 관심, 생태복원의 개념, 탄소 중립에 대한 이해를 보여, 연구의 초기 목 적을 달성한 것으로 나타났다. 본 연구로 인해 개발된‘수풀로 메이커’는 아동과 청소년의 환경교육 교재의 역할 뿐만 아니라, 환경에 대한 깊이 있는 이해를 견인하고, 더 나아가 실천양식 변화의 잠재성을 키우는 역 할에 기여할 수 있을 것으로 기대한다.
        4,200원
        4.
        2023.11 구독 인증기관·개인회원 무료
        Molten chloride salts have received considerable research attention as potential nuclear fuel and coolant candidates for molten salt reactors. However, there are several challenges, especially for structural materials due to the selective dissolution of chromium (Cr) in the molten chloride salts environment. Understanding the compatibility of uranium (U), which is used as nuclear fuel in molten salt reactors, with Cr in molten chloride salts is critical for designing the molten salt reactor structure. Therefore, in this study, the cyclic voltammetry (CV) was used to investigate the electrochemical behaviors of U and Cr. The diffusion coefficients and formal potentials were obtained. The electrochemical properties of uranium and chromium were investigated by CV in molten NaCl-MgCl2 salt at 600°C. Tungsten rods for working and counter electrode, and Ag/AgCl for reference electrode were utilized in this experiment. UCl3 made from the chemical dissolution of U rods and CrCl2 (Sigma-Aldrich, 99.99%) were used. Diffusion coefficients (D) of U and Cr were calculated by measuring reduction peak current of U3+/U and Cr2+/Cr from CV curves and using the Berzins-Delahay equation; D (U3+/U) = 3.0×10-5 cm2s-1 and D (Cr2+/Cr) = 3.3×10-5 cm2s-1. The formal potentials were also calculated by using the reduction peak potential obtained from CV results; E0’ (U3+/U) = -1.173 V and E0’ (Cr2+/Cr) = -0.321 V. The ionization tendency was investigated by comparing each reduction peak potential. The reduction peak potential Ep,c was increasing order of Ep,c (U3+/U) < Ep,c (Cr2+/Cr) < Ep,c (U4+/U3+). It can be seen that in the presence of U4+ and Cr metals, the Cr in the alloy can dissolve into Cr2+, but in the presence of U3+ and Cr metals, the Cr in the alloy does not dissolve into Cr2+. By analyzing the CV curve, diffusion coefficients and formal standard potentials were obtained. The result of comparing reduction peak potentials suggests that the nuclear fuel using U4+ should be inhibited to prevent the selective dissolution of Cr.
        5.
        2023.11 구독 인증기관·개인회원 무료
        The ultimate objective of deep geological repositories is to achieve complete segregation of hazardous radioactive waste from the biosphere. Thus, given the possibility of leaks in the distant future, it is crucial to evaluate the capability of clay minerals to fulfill their promising role as both engineered and natural barriers. Selenium-79, a long-lived fission product originating from uranium- 235, holds significant importance due to its high mobility resulting from the predominant anionic form of selenium. To investigate the retardation behaviors of Se(IV) in clay media by sorption, a series of batch sorption experiments were conducted. The batch samples consisted of Se(IV) ions dissolved in 0.1 M NaCl solutions, along with clay minerals including kaolinite, montmorillonite, and illite-smectite mixed layers. The pH of the samples was also varied, reflecting the shift in the predominant selenium species from selenious acid to selenite ion as the environment can shift from slightly acidic to alkaline conditions. This alteration in pH concurrently promotes the competition of hydroxide ions for Se(IV) sorption on the mineral surface as the pH increases and impedes the selective attachment of selenium. The acquired experimental data were fitted through Langmuir and Freundlich sorption isotherms. From the Freundlich fit data, the distribution coefficient values of Se(IV) for kaolinite, montmorillonite, and illite-smectite mixed layer were derived, which exhibited a clear decrease from 91, 110, 62 L/kg at a pH of 3.2 to 16, 6.3, 12 L/kg at a pH of 7.5, respectively. These values derived over the pH range provide quantitative guidance essential for the safety assessment of clay mineral barriers, contributing to a more informed site selection process for deep geological repositories.
        6.
        2023.11 구독 인증기관·개인회원 무료
        This program aims to build a specialized and converged educational platform for the training of students in the back-end nuclear fuel cycle and cultivate integrated human resources encompassing majors, generations, and fields. To achieve this, we have established an infrastructure for integrated education and training in the radiochemistry and back-end nuclear fuel cycle and operated specialized educational courses linked with special lectures, experimental practices, and field trips. Firstly, to construct an integrated educational and training infrastructure for the back-end nuclear fuel cycle, we formed a committee of experts from both inside and outside the institution and built an advanced radiochemistry laboratory equipped with physical and chemical analysis instruments. Through a comprehensive educational program involving theory, experiments, and discussions, we have established an integrated curriculum across adjacent majors and interdisciplinary studies. We also operate short-term education and experimental training programs (e.g., summer and winter schools for the back-end nuclear fuel cycle). Secondly, the program has connected leading researchers domestically and internationally, as well as the next generation of scholars. The program offers long-term educational opportunities and internships targeting both undergraduate and graduate students. To support this, we continuously offer expert colloquiums and individual research internships. Through regular committee meetings and workshops, we focus on nurturing the integrated talents necessary for the back-end nuclear fuel cycle. Through this program, students from various fields are being trained as competent integrated human resources capable of addressing various issues in the back-end nuclear fuel cycle. It is expected that this will enable us to supply specialized technical personnel in the back-end nuclear field in line with mid-to-long-term demands.
        7.
        2023.11 구독 인증기관·개인회원 무료
        The domestic Pressurized Heavy Water Reactor (PWHR) nuclear power plant, Wolsong Unit 1, was permanently shut down on December 24, 2019. However, research on decommissioning has mainly focused on Pressurized Water Reactors (PWRs), with a notable absence of both domestic and international experience in the decommissioning of PHWRs. If proper business management such as radiation safety and waste is not performed, it can lead to increased business risks and costs in decommissioning. Therefore, the assessment of waste volume and cost, which provide fundamental data for the nuclear decommissioning process, is a crucial technical requirement before initiating the actual decommissioning of Wolsong Unit 1. Decommissioning radiation-contaminated structures and facilities presents significant challenges due to high radiation levels, making it difficult for workers to access these areas. Therefore, technology development should precede decommissioning process assessments and safety evaluations, facilitating the derivation of optimal decommissioning procedures and ensuring worker safety while enhancing the efficiency of decommissioning operations. In this study, we have developed a program to estimate decommissioning waste amounts for PHWRs, building upon prior research on PWR decommissioning projects while accounting for the specific design characteristics of PHWRs. To evaluate the amount of radioactive waste generated during decommissioning, we considered the characteristics of radioactive waste, disposal methods, packaging container specifications, and the criteria for the transfer of radioactive waste to disposal operators. Based on the derived algorithm, we conducted a detailed design and implemented the program. The proposed program is based on 3D modeling of the decommissioning components and the calculation of the Work Difficulty Factor (WDF), which is used to determine the time weighting factors for each task. Program users can select the cutting and packaging conditions for decommissioning components, estimate waste amount based on the chosen decommissioning method, and calculate costs using time weighting factors. It can be applied not only to PHWRs, but also to PWRs and non-nuclear fields, providing a flexible tool for optimizing decommissioning process.
        8.
        2023.10 구독 인증기관·개인회원 무료
        금번 연구를 통해 외래산림해충 확산 분석 플랫폼 K-SDM (K-SDM)의 해충 분포 기능이 개발되었다. 해충 분포를 보여주는 기능은 2가지로 구현되며, 조사 자료를 바탕으로 현재 국내의 해충 분포를 나타내는 “외래산림 해충분포”기능과 데이터를 분석하여 예측되는 미래의 해충 분포를 제공하는 “외래산림해충예측”기능이 있다. “외래산림해충분포”는 조사자에 의해 현장에서 구축된 DB 현황을 지도상에 수치로 나타내며, 입력 기간, 해충 종 별로 구분이 가능하여 원하는 해충종의 분포를 선택하여 볼 수 있다. 지도 좌측에는 각 도별로 조사된 해충 개체수의 통계를 도표로 제공하여 수치상으로도 해충 분포를 파악할 수 있다. “외래산림해충예측”은 DB를 분석 하고 미래 기후 시나리오를 적용하여 도출한 미래의 해충 예측 분포도를 사용자에게 제공되며, 미리보기 이미지 와 함께 원본자료가 첨부되어 좀 더 자세한 정보를 열람할 수 있다. 본 플랫폼의 해충 분포 기능은 최근 기후변화 등으로 외래산림해충의 발생이 증가하는 추세에 맞춰 이들의 현재 분포와 미래의 분포양상을 조기 파악하여 이를 통한 추후 조기 방제 및 대응책 마련 등에 크게 기여할 것으로 기대된다.
        13.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The function of coolant in machining is to reduce the frictional force in the contact area in between the tool and the material, and to increase the precision by cooling the work-piece and the tool, to make the machining surface uniform, and to extend the tool life. However, cutting oil is harmful to the human body because it uses chlorine-based extreme pressure additives to cause environmental pollutants. In this study, the effect of cutting temperature and surface roughness of titanium alloy for medical purpose (Ti-6Al-7Nb) in eco-friendly ADL slot shape machining was investigated using the response surface analysis method. As the design of the experiment, three levels of cutting speed, feed rate, and depth of cut were designed and the experiment was conducted using the central composite planning method. The regression expressions of cutting temperature and surface roughness were respectively obtained as quadratic functions to obtain the minimum value and optimal cutting conditions. The values from this formula and the experimental values were compared. As a result, this study makes and establishes the basis to prevent environmental pollution caused by the use of coolant and to replace it with ADL (Aerosol Dry Lubricant) machining that uses a very small amount of vegetable oil with high pressure.
        4,000원
        15.
        2022.10 구독 인증기관·개인회원 무료
        With the aging of nuclear power plants (NPPs) in 37 countries around the world, 207 out of 437 NPPs have been permanently shutdown as of August 2022 according to the IAEA. In Korea, the decommissioning of NPPs is emerging as a challenge due to the permanent shutdown of Kori Unit 1 and Wolsong Unit 1. However, there are no cases of decommissioning activities for Heavy Water Reactor (HWR) such as Wolsong Unit 1 although most of the decommissioning technologies for Light Water Reactor (LWR) such as Kori Unit 1 have been developed and there are cases of overseas decommissioning activities. This study shows the development of a decommissioning waste amount/cost/process linkage program for decommissioning Pressurized Heavy Water Reactor (PHWR), i.e. CANDU NPPs. The proposed program is an integrated management program that can derive optimal processes from an economic and safety perspective when decommissioning PHWR based on 3D modeling of the structures and digital mock-up system that links the characteristic data of PHWR, equipment and construction methods. This program can be used to simulate the nuclear decommissioning activities in a virtual space in three dimensions, and to evaluate the decommissioning operation characteristics, waste amount, cost, and exposure dose to worker. In order to verify the results, our methods for calculating optimal decommissioning quantity, which are closely related to radiological impact on workers and cost reduction during decommissioning, were compared with the methods of the foreign specialized institution (NAGRA). The optimal decommissioning quantity can be calculated by classifying the radioactivity level through MCNP modeling of waste, investigating domestic disposal containers, and selecting cutting sizes, so that costs can be reduced according to the final disposal waste reduction. As the target waste to be decommissioning for comparative study with NAGRA, the calandria in PHWR was modeled using MCNP. For packaging waste container, NAGRA selected three (P2A, P3, MOSAIK), and we selected two (P2A, P3) and compared them. It is intended to develop an integrated management program to derive the optimal process for decommissioning PHWR by linking the optimal decommissioning quantity calculation methodology with the detailed studies on exposure dose to worker, decommissioning order, difficulty of work, and cost evaluation. As a result, it is considered that it can be used not only for PHWR but also for other types of NPPs decommissioning in the future to derive optimal results such as worker safety and cost reduction.
        17.
        2022.10 구독 인증기관·개인회원 무료
        One of the promising candidates for heat transfer fluid is molten chloride salts. They have been studied in various fields such as the electrolyte of pyroprocessing, the molten salt reactor coolant, and the energy storage system media. Main considerations for utilizing molten chloride salts are the compatibility of salts with structural materials. The corrosion behavior of structural materials in molten chloride salts must be understood to identify suitable materials against the corrosive environment. In this study, the corrosion behavior of a candidate structural material, Hastelloy N, in molten LiCl- KCl salt at 500°C were investigated by the electrochemical impedance spectroscopy (EIS) method. The sheet type of Hastelloy N was utilized as the working electrode in LiCl-KCl to measure the EIS data for 100 hours with 5 hours of time intervals. The EIS data were measured in the frequency range from 104 Hz to 10-2 Hz with the AC signal (amplitude = 20 mV) at open circuit potential. The capacitance semicircle observed in Nyquist plots for all periods indicates that charge-transfer controlled reactions occur. As the immersion time progresses, the radius of the semicircle in Nyquist plots and the impedance and phase angle in Bode plots decrease. These behaviors suggest a decreasing reaction resistance and the corrosion reactions are accelerated with the immersion time. The EIS data were fitted using the equivalent circuit to achieve quantitative results. Two capacitor-resistor components were considered due to the overlapped shape of two valleys in phase angle. The depressed shape of the semicircle in Nyquist plots led to the use of the constant phase element(Q) instead of the capacitor. Therefore, R(Q(R(QR))) circuit was selected to fit the EIS data. Fitting results show that the charge transfer resistance decreases dramatically within 1 day and then converges. The film resistance shows no clear trends, but the increase of the film admittance value indicates the decreased film thickness. Consequently, the film appears to exist like the oxide layer but it does not act as a protective layer. The real-time EIS data were measured in molten salt and provides the corrosion behavior over time. The corrosion mitigation strategy should consider that the corrosion of Hastelloy N accelerates over time and its intrinsic film cannot act as the protective layer. The next steps of this study are to evaluate other candidate structural materials and to demonstrate the presence of the film.
        18.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of using coolant in machining is both to increase a tool life and also to prevent product deformation and thus, stabilize the surface quality by lubricating and cooling the tool and the machining surface. However, a very small amount of cutting mist should be used because chlorine-based extreme pressure additives are used to generate environmental pollutants in the production process and cause occupational diseases of workers. In this study, medical titanium alloy (Ti-6Al-7Nb) was subjected to a processing experiment by selecting factors and levels affecting cutting power in the processing of the Aerosol Dry Lubrication (ADL) method using vegetable oil. The machining shape was a slot to sufficiently reflect the effect of the cutting depth. As for the measurement of cutting force, the trend of cutting characteristics was identified through complete factor analysis. The factors affecting the cutting force of ADL slot processing were identified using the reaction surface analysis method, and the characteristics of the cutting force according to the change in factor level were analyzed. As the cutting speed increased, the cutting force decreased and then increased again. The cutting force continued to increase as the feed speed increased. The increase in the cutting depth increased the cutting force more significantly than the increase in the cutting speed and the feed speed. Through the reaction surface analysis method, the regression equation for predicting cutting force was identified, and the optimal processing conditions were proposed. The cutting force was predicted from the secondary regression equation and compared with the experimental value.
        4,200원
        19.
        2022.09 구독 인증기관 무료, 개인회원 유료
        Ulva compressa Linnaeus (UCL) is a green algae seaweed that performs photosynthesis and is used as a food material in some Asian regions including Korea. It is known to be the dominant species in copper ion-contaminated seas, and many studies on copper ion resistant mechanisms have been reported. UCL is known to have an excellent antioxidant effect, but limited information is available regarding its other physiological activities. In this study, we investigated the anticancer activity of 30% prethanol extracts of Ulva compressa Linnaeus (30% PeUCL) and the underlying mechanisms of its activity on human FaDu hypopharyngeal squamous carcinoma cells. The 30% PeUCL extracts suppressed FaDu cell viability without affecting normal cells (L929), as determined by MTT and viability assays. Furthermore, the 30% PeUCL extracts induced apoptosis, as determined by DAPI staining. The 30% PeUCL extracts inhibited colony formation effectively as well as wound-healing of FaDu cells, even at noncytotoxic concentrations. In addition, 30% PeUCL extracts induced apoptosis significantly through proteolytic cleavage of caspase-3, -7, and -9, and poly (ADP-ribose) polymerase, and by downregulation of Bcl-2 and upregulation of Bax in FaDu cells, as determined by Western blot analysis. Collectively, these results suggest that the inhibitory effect of 30% PeUCL extracts on the growth of oral cancer cells, colony formation and wound-healing may be mediated by caspase- and mitochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, 30% PeUCL extracts can be administered as a natural chemotherapeutic drug for the treatment of human oral cancers.
        4,000원
        20.
        2022.09 구독 인증기관 무료, 개인회원 유료
        Store-operated Ca2+ entry (SOCE) represents one of the major Ca2+ entry routes in non-excitable cells. It is involved in a variety of fundamental biological processes and the maintenance of Ca2+ homeostasis. The Ca2+ releaseactivated Ca2+ (CRAC) channel consists of stromal interaction molecule and Orai; however, the role and action of Homer proteins as an adaptor protein to SOCE-mediated Ca2+ signaling through the activation of CRAC channels in non-excitable cells still remain unknown. In the present study, we investigated the role of Homer2 in the process of Ca2+ signaling induced by the interaction between CRACs and Homer2 proteins in non-excitable cells. The response to Ca2+ entry by thapsigargin-mediated Ca2+ store depletion remarkably decreased in pancreatic acinar cells of Homer2–/– mice, as compared to wild-type cells. It also showed critical differences in regulated patterns by the specific blockers of SOCE in pancreatic acinar cells of Homer2–/– mice. The response to Ca2+ entry by the depletion in Ca2+ store markedly increased in the cellular overexpression of Orai1 and STIM1 as compared to the overexpression of Homer2 in cells; however, this response was remarkably inhibited by the overexpression of Orai1, STIM1, and Homer2. These results suggest that Homer2 has a critical role in the regulatory action of SOCE activity and the interactions between CRAC channels.
        4,000원
        1 2 3 4 5