The growing significance of sustainable energy technologies underscores the need for safe and efficient management of spent nuclear fuels (SNFs), particularly via deep geological disposal (DGD). DGD involves the long-term isolation of SNFs from the biosphere to ensure public safety and environmental protection, necessitating materials with high corrosion resistance for DGD canisters. This study investigated the feasibility of a Cu–Ni film, fabricated via additive manufacturing (AM), as a corrosion-resistant layer for DGD canister applications. A wire-fed AM technique was used to deposit a millimeter-scale Cu–Ni film onto a carbon steel (CS) substrate. Electrochemical analyses were conducted using aerated groundwater from the KAERI underground research tunnel (KURT) as an electrolyte with an NaCl additive to characterize the oxic corrosion behavior of the Cu–Ni film. The results demonstrated that the AM-fabricated Cu–Ni film exhibited enhanced corrosion resistance (manifested as lower corrosion current density and formation of a dense passive layer) in an NaCl-supplemented groundwater solution. Extensive investigations are necessary to elucidate microstructural performance, mechanical properties, and corrosion resistance in the presence of various corroding agents to simplify the implementation of this technology for DGD canisters.
In this study, we investigated the suppression of the corrosion of cast iron in a copper–cast iron double-layered canister under local corrosion of the copper layer. The cold spray coating technique was used to insert metals with lower galvanic activity than that of copper, such as silver, nickel, and titanium, between the copper and cast iron layers. Electrochemically accelerated corrosion tests were performed on the galvanic specimens in KURT groundwater at a voltage of 1.0 V for a week. The results revealed that copper corrosion was evident in all galvanic specimens of Cu–Ag, Cu–Ni, and Cu–Ti. By contrast, the copper was barely corroded in the Cu–Fe specimens. Therefore, it was concluded that if an inactive galvanic metal is applied to the areas where local corrosion is concerned, such as welding parts, the disposal canister can overcome local or non-uniform corrosion of the copper canister for long periods.
Buffer materials play an important role in preventing the leakage of radionuclides from the residue. The mineralogical properties of these buffer materials are critical in repository design. This study presents the fundamental properties of Na-type MX80 and a novel Ca-type Bentonil- WRK. The CaO to MgO ratio in Bentonil-WRK was approximately 1:1, and the CaO to Na2O ratio was approximately 2.8:1. These results suggest that Bentonil-WRK demonstrates a lower swelling index compared to Gyeongju bentonite due to its CaO-to-MgO ratio’s proximity to 1:1, despite having a higher montmorillonite content than Gyeongju bentonite. The results of this research can provide useful foundational data for the evaluation of the thermal-hydraulic-mechanical-chemical behavior of buffer materials.
In this study, a third metal layer with a higher corrosion potential than copper was introduced between the copper and cast iron layer to strengthen the corrosion resistance of the copper layer which is considered as a corrosion resistant barrier in the disposal container for spent nuclear fuel. Three types of corrosion-resistant metals, silver, nickel, and titanium, were selected as the intermediate insertion layer, and the galvanic specimens of two bonded metals were exposed to KURT (KAERI Underground Research Tunnel) groundwater and a high voltage of 1.0 V was applied to corrode the specimens at electrochemically accelerated condition. Corrosion of copper part was confirmed in Cu-Ti, Cu-Ni, and Cu-Ag galvanic specimens, but copper part was not corroded in Cu-Fe galvanic specimen. If the corrosion-resistant intermediate layer proposed in this study works properly, the local corrosion problem of copper disposal canister is expected to be some degree solved, which can apply to a welding part or a stress concentrated part.
본 연구는 참가자 간 표상 유사성 분석(intersubject representation similarity analysis: IS-RSA)을 이용하여 3개의 선행연구에서 얻어진 데이터의 참가자 반응 일치성 패턴을 확인하고 각 실험의 정서 조건 간 차이가 있는지 살펴보 았다. 3개의 실험은 각각 ASMR 자극, 시각 및 청각 자극, 시계열적 정서 동영상 자극을 사용하였으며 각 실험의 조건에 맞게 정서 평정치와 생리측정치를 측정하였다. 참가자 간 표상 유사성 분석을 계산하기 위해서 각 실험에 있는 각 자극에 대한 참가자들의 측정치를 쌍별로 피어슨 상관계수를 구하였다. 실험의 조건 간 비교를 위해 분산분 석과 평균을 비교하였다. 연구 결과, ASMR과 시각 및 청각 데이터의 참가자 간 반응의 일치성은 시계열적 정서 동영상 참가자들 반응의 일치성에 비해 일관적이었다. ASMR 실험은 긍정 자극에서 참가자 간 반응의 일치성이 높았다. 청각 및 시각 실험은 높은 각성수준과 시각 자극에서 참가자들의 반응 일치성이 높았다. 본 연구 결과는 생리 적, 행동적 반응에 대한 측정치의 IS-RSA가 다차원적인 데이터의 정보를 요약하여 제시하며 이를 하나의 분석 데이 터로 변환 가능하다는 것을 확인하였다. 이를 통해, IS-RSA가 참가자들의 반응 일관성에 대한 전반적인 정보를 제시 할 수 있는 새로운 분석 방법으로의 가능성을 제시하였다.
The purpose of this study was to examine whether galvanic corrosion of copper occurs by inserting a third barrier layer with a higher corrosion potential than copper between copper and cast iron when the copper layer is locally perforated by pitting or partial corrosion. A triple layer composed of copper, inserted metal, and carbon steel was manufactured by cold spray coating of inserting metal powders such as Ag, Ni, and Ti on carbon steel plate followed by Cu coating on it. First, the corrosion properties were evaluated electrochemically for each metal coating. As a result of Tafel plot anaylsis in KURT groundwater condition, the corrosion potential of Fe (-567 mV) was much lower than that of Cu (-91 mV), and the corrosion potential of Ni (-150 mV) was also lower than that of Cu. Therefore, Ni was likely to corrode before Cu. However, the corrosion current of Ni was lower than that of the Cu. In the galvanic specimen where the copper and inserting metal were exposed together, Cu-Fe was much lower corrosion potential of -446 mV, and the corrosion potential of Cu-Ti, Cu-Ni, and Cu-Ag were slightly higher than that of Cu. Therefore, it seemed that Ag, Ni, and Ti all might promote galvanic corrosion of surrounding copper when the copper layer was perforated to the inserted metal layer. If the metal insertion presented in this study operates properly, the disposal container does not need to worry about the partial corrosion or non-uniform corrosion of external copper layer.
본 연구는 참가자 간 상관(Intersubject correlation: ISC)기법을 통해 정서 유발 자극에 대한 한 참가자의 반응과 그 참가자를 제외한 나머지 참가자들의 반응 간 일치성이 각 정서표상 범주(지배가, 각성가, 정서가)와 다양한 감각 양상(청각, 시각, 촉각)에서 어떠한 차이가 있는지 밝히고자 하였다. 참가자 간 상관을 계산하기 위해 사용된 데이터 는 참가자들의 청각, 시각, 촉각 자극에 대한 생리 측정치와 정서 평정치로 구성되었으며, 한 참가자의 데이터 세트 와 나머지 참가자들의 데이터 세트의 평균으로 구분한 뒤 가능한 모든 자극 쌍에 대해 상관을 구하는 방식으로 참가 자 간 상관을 계산하였다. 연구 결과, 지배가를 기준으로 재정렬한 데이터 세트에 대한 참가자들의 반응 일치성은 청각 감각양상 조건보다 시각 감각양상 조건에서 높은 ISC 값을 얻었다. 다음으로 각성가로 재정렬한 데이터 세트의 경우 시각 감각양상과 청각 감각양상에서 차이가 있음은 같았지만, 지배가 기준으로 재정렬한 데이터 세트와 결과가 상반되었다. 마지막으로, 정서가를 기준으로 재정렬된 데이터 세트는 모든 감각양상에서 부정적인 데이터 세트들이 긍정적인 데이터 세트보다 참가자들의 반응 일치성이 더 높았다. 모든 데이터 세트에서 정서표상 범주의 높고 낮음 과 상관없이 촉각 감각양상에서 높은 ISC 값을 얻었다. 본 연구의 결과는 참가자 간 상관의 다양한 감각양상과 정서 표상에 대한 반응의 일치성이 의미하는 바에 대한 해석을 제시하며, ISC 분석 방법이 참가자 반응의 차이에 대한 패턴을 측정하는 유용한 도구가 될 가능성을 제시하였다.
Corrosion cells that simulates engineering barrier system have been stored in an aerobic KURT environment for 10 years, which were recovered and dismantled in 2021. The test specimens were compressed copper (Com. Cu), Cold spray copper (CSC Cu), Ti Gr.2, STS 304, and Cast nodular iron. The specimens were buffered by compact Ca-type Gyeongju bentonite (KJ-I) and compact Na-type Wyoming bentonite. And the corrosion cells were exposed to KURT groundwater at 30°C for about 10 years (3,675 days). As a result of the long-term experiment in aerobic environment, it was confirmed that Na-bentonite is more advantageous for inhibiting corrosion than Ca-bentonite. The corrosion thickness of the most specimens in Ca bentonite was slightly lower than in Na bentonite until the initial 500 days, but after 10 years, the corrosion thickness of copper and cast iron specimens in Na bentonite was clearly lower. The corrosion thickness of the copper specimen in Na bentonite was very low about 0.5 um in both Com. Cu and CSC Cu. Moreover, the corrosion thickness in Ca bentonite was very high about 4 um for Com. Cu and 6 um for CSC Cu. In the case of cast iron, the corrosion thickness in Na bentonite was about 13 um, and 15 um in Ca bentonite. The common feature of copper and cast iron specimens in Ca bentonite, which showed a high corrosion thickness, is the forming of a white mineral deposition layer on the specimen surface, which was presumed to be some kind of feldspar. On the other hand, it was found that the STS304 and Ti specimens were hardly corroded even after 10 years. In conclusion, when a white mineral deposition layer was formed on the specimen surface, the corrosion thickness always increased sharply than before, and thus it was estimated that the generation of the mineral deposition layer cause the increase of bentonite permeability, and rather the weakening of existing passive corrosion film.
Solid-state mechanochemical reduction combined with subsequent melting consolidation was suggested as a technical option for the oxide reduction in pyroprocessing. Ni ingot was produced from NiO as a starting material through this technique while Li metal was used as a reducing agent. To determine the technical feasibility of this approach for pyroprocessing, which handles spent nuclear fuels, thermodynamic calculations of the phase stabilities of various metal oxides of U and other fission elements were made when several alkaline and alkali-earth metals were used as reducing agents. This technique is expected to be beneficial, not only for oxide reduction but also for other unit processes involved in pyroprocessing.
Li-Cd 합금을 이용한 환원추출방식을 LiCl-KCl 기반의 drawdown 공정에 적용하게 되면, LiCl-KCl 공융염의 조성이 파괴되므로 공정온도를 높여야 하며, 전해정련 및 전해제련과 같은 공정에 LiCl-KCl 용융염을 재사용할 수 없게 된다. 따라서, 본 연구에서는 공융염 조성에 적합한 Li-K-Cd 합금을 제조하였으며, 이를 이용하여 U와 Nd가 포함된 LiCl-KCl 염에 투입하여 용 융염 내 UCl3의 제거가 가능한지 평가하였다.