검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 136

        1.
        2024.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The bentonite buffer material is a crucial component in an engineered barrier system used for the disposal of high-level radioactive waste. Because a large amount of heat from the disposal canister is released into the bentonite buffer material, the thermal conductivity of the bentonite buffer is a crucial parameter that determines the design temperature. At the Korea Atomic Energy Research Institute (KAERI), a new standard bentonite (Bentonil-WRK) has been used since 2022 because Gyeongju (KJ) bentonite is no longer produced. However, the currently available data are insufficient, making it essential to investigate both the basic and complex properties of Bentonil-WRK. Thus, this study evaluated its geotechnical and thermal properties and developed a thermal conductivity empirical model that considers its dry density, water content, and temperature variations from room temperature to 90°C. The coefficient of determination (R2) for the model was found to be 0.986. The thermal conductivity values of Bentonil-WRK were 1–10% lower than those of KJ bentonite and 10–40% higher than those of MX-80 bentonites, which were attributable to mineral-composition differences. The thermal conductivity of Bentonil-WRK ranged between 0.504 and 1.149 W·(m−1·K−1), while the specific heat capacity varied from 0.826 to 1.138 (kJ·(kg−1·K−1)).
        4,000원
        2.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Since rice is the main food in Korea, there are no regulations on corn milling yet. Corn is known as one of the world's top three food crops along with wheat and rice, and it is known that 3.5 billion people worldwide use corn for food. In addition, corn mills are not developed or sold in Korea, but the use of corn mills is increasing significantly in many countries in Southeast Asia. In the Philippines, as Korea's rice mill import increases, Korea's KAMICO (Korea Agricultural Machinery Industry Cooperative) and domestic company A agreed to develop a corn mill jointly with PHilMech, an organization affiliated with the Philippine Ministry of Agriculture. However, research on corn milling was very insignificant, so the development was carried out based on the technology of Korea's rice mill. Rice milling is performed by peeling off the skin of rice and producing brown or white rice, so it is carried out by removing the skin and cutting the skin. On the other hand, in the corn mill, the skin of the corn is peeled, pulverized and selected to produce main products suitable for edible use. Therefore, in order to develop a corn mill, processes such as peeling, transfer, grinding, sorting, and by-product separation are required, and suitable parts must be developed. In addition, the performance must be gradually improved through experiments in which corn is repeatedly milled. The Philippines produces 7.98 million tons/year of corn, which is about 100 times that of Korea, and is mostly consumed as a staple food. This is about 10% of the total crop production in the Philippines. In addition, the main cultivation complexes of corn are the mountainous regions of Tarlac or Pangasinan, and the produced corn is 72.4% of the so-called yellow corn called Arabel and Sarangani, and the remaining 27.6% are known as white corn. In this study, it was intended to produce grains of 2.5 mm or less suitable for food for yellow corn and to develop a corn mill for 200 kg per hour. Detailed conditions for development are stipulated as more than 55% of the main product recovery rate, more than 31% of the by-product recovery rate, less than 5% of the raw material loss rate, and more than 80% of the embryo dislocation rate. In this study, to achieve this, the overall process of the corn mill was developed, and the optimal conditions for the corn mill were obtained through the development of parts and empirical tests to improve performance. In addition, it was intended to achieve the development goal by evaluating and analyzing the performance of each part so that it did not conflict.
        4,800원
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hypertension is characterized by excessive renin-angiotensin system activity, leading to blood vessel constriction. Several synthetic compounds have been developed to inhibit renin and angiotensin-converting enzyme (ACE). These drugs often have adverse side effects, driving the exploration of plant protein-derived peptides as alternative or supplementary treatments. This study assessed the phenolic compound and amino acid content and the antioxidant and antihypertensive activity of 5 South Korean staple crops. Sorghum had the highest phenolic compound content and exhibited the highest antioxidant activity. Millet grains, particularly finger millet (38.86%), showed higher antihypertensive activity than red beans (14.42%) and sorghum (17.16%). Finger millet was found to contain a large proportion of branched-chain, aromatic, and sulfur-containing amino acids, which are associated with ACE inhibition. In particular, cysteine content was positively correlated with ACE inhibition in the crops tested (r=0.696, p<0.01). This study confirmed that the amino acid composition was more correlated with the antihypertensive activity of grains than the phenolic compound content. Finger millet mainly contained amino acids, which have higher ACE inhibitory activity, resulting in the strongest antihypertensive activity. These findings underscore the antihypertensive potential of select crops as plant-based food ingredients, offering insight into their biological functions.
        4,200원
        4.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This comprehensive study delves into the intricate process of exfoliating and functionalizing boron nitride nanosheets (BNNSs) extracted from hexagonal boron nitride (h-BN), and meticulously explores their potential application within epoxy composites. The extensive research methodology encompasses a sequence of treatments involving hydrothermal and sonication processes aimed at augmenting the dispersion of BNNSs in solvents. Leveraging advanced analytical techniques such as Raman spectroscopy, X-ray diffraction, and FTIR spectroscopy, the study rigorously analyzes a spectrum of changes in the BNNS’s properties, including layer count variations, interlayer interactions, crystal structure modifications, and the introduction of functional groups. The research also rigorously evaluates the impact of integrating BNNSs, specifically glycidyl methacrylate (GMA)-functionalized BNNSs, on the thermal conductivity of epoxy composites. The conclusive findings exhibit notable enhancements in thermal properties, predominantly attributed to the enhanced dispersion of fillers and enhanced interactions within the epoxy matrix. This pioneering work illuminates the wide potential of functionalized BNNSs for significantly enhancing the thermal conductivity of epoxy composites, paving the way for advanced materials engineering and practical applications.
        4,000원
        5.
        2023.11 구독 인증기관·개인회원 무료
        The radiological characterization of SSCs (Structure, Systems and Components) plays one of the most important role for the decommissioning of KORI Unit-1 during the preparation periods. Generally, a regulatory body and laws relating to the decommissioning focus on the separation and appropriate disposal or storage of radiological waste including ILW (intermediate level waste), LLW (low level waste), VLLW (very low level waste) and CW (clearance waste), aligned with their contamination characteristics. The result of the preliminary radiological characterization of KORI Unit-1 indicated that, apart from neutron activated the RV (reactor vessel), RVI (reactor vessel internals), and BS (biological shielding concrete), the majorities of contamination were sorted to be less than LLW. Radiological contamination can be evaluated into two methods. Due to the difficulties of directly measuring contamination on the interior surfaces of the pipe, called CRUD, the assessment was implemented by modeling method, that is measuring contamination on the exterior surfaces of the pipes and calculating relative factors such as thickness and size. This indirect method may be affected by the surrounding radiation distribution, and only a few gamma nuclides can be measured. Therefore, it has limitation in terms of providing detailed nuclide information. Especially, α and β nuclides can only be estimated roughly by scaling factors, comparing their relative ratios with the existing gamma results. To overcome the limitation of indirect measurement, a destructive sampling method has been employed to assess the contamination of the systems and component. Samples are physically taken some parts of the systems or components and subsequently analyzed in the laboratory to evaluate detailed nuclides and total contamination. For the characterization of KORI Unit-1, we conducted the radiation measurement on the exterior surfaces of components using portable instruments (Eberline E-600 SPA3, Thermo G20-10, Thermo G10, Thermo FH40TG) at BR (boron recycle system) and SP (containment spray system) in primary system. Based on these results, the ProUCL program was employed to determine the destructive sample collection quantities based on statistical approach. The total of 5 and 8 destructive sample quantities were decided by program and successfully collected from the BR and SP systems, respectively. Samples were moved to laboratory and analyzed for the detail nuclide characteristics. The outcomes of this study are expected to serve as valuable information for estimating the types and quantities of radiological waste generated by decommissioning of KORI Unit-1.
        6.
        2023.11 구독 인증기관·개인회원 무료
        EU taxonomy requires to solve problems for safe management of radioactive waste and disposal of spent fuel, which is a precondition for growing demand for nuclear power plant. Currently, Korea manages about 18,000 tons of high-level radioactive waste at temporary storage facilities in nuclear power plant sites, but such temporary storage facilities are expected to become saturated sequentially from 2031. Therefore, it is necessary to secure a permanent disposal facility to safely treat high-level radioactive waste. In accordance with the second basic plan for high-level radioactive waste management in 2021, it is necessary to establish requirements for regulatory compliance for the site selection and site acquisition, investigation and evaluation, and construction for the establishment of a deep geological disposal facility. In this study, we analyzed the regulatory policies and cases of leading foreign countries related to deep geological disposal facilities for high-level radioactive waste disposal waste such as IAEA, USA, Sweden, and Finland using data analysis methodology. To analyze a large amount of textbased document data, text mining is applied as a major technology and a verification standard that secures validity and safety based on the regulatory laws described so far is developed to establish a regulatory base suitable for domestic deep geological disposal status. Based on the collected data, preprocessing and analysis with Python were performed. Keywords and their frequency were extracted from the data through keyword analysis. Through the measured frequency values, the contents of the objects and elements to be regulated in the statutory items were grasped. And through the frequency values of words co-occurring among different sections through the analysis of related words, the association was obtained, and the overall interpretation of the data was performed. The results of analyzing regulations of major foreign countries using text mining are visualized in charts and graphs. Word cloud can intuitively grasp the contents by extracting the main keywords of the contents of the regulations. Through the network connection graph, the relationship between related words can be visually structured to interpret data and identify the causal relationship between words. Based on the result data, it is possible to compare and analyze the factors to be supplemented by analyzing domestic nuclear safety case and regulations.
        9.
        2022.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Major accidents at nuclear power plants generate huge amounts of radioactive waste in a short period of time over a wide area outside the plant boundary. Therefore, extraordinary efforts are required for safe management of the waste. A well-established remediation plan including radioactive waste management that is prepared in advance will minimize the impact on the public and environment. In Korea, however, only limited plans exist to systematically manage this type of off-site radioactive waste generating event. In this study, we developed basic strategies for off-site radioactive waste management based on recommendations from the IAEA (International Atomic Energy Agency) and NCRP (National Council on Radiation Protection and Measurements), experiences from the Fukushima Daiichi accident in Japan, and a review of the national radioactive waste management system in Korea. These strategies included the assignment of roles and responsibilities, development of management methodologies, securement of storage capacities, preparation for the use of existing infrastructure, assurance of information transparency, and establishment of cooperative measures with international organizations.
        4,000원
        10.
        2022.05 구독 인증기관·개인회원 무료
        A geological repository system consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. Among these, the bentonite buffer is one of the most important components to assure the safe disposal of high-level radioactive waste (HLW). As the bentonite buffer is installed as a block type, it is important to fabricate homogeneously. Generally, floating die method and cold isostatic press (CIP) method are used to fabricate bentonite blocks. In this paper, two bentonite blocks were produced using float die method at first, and CIP method was additionally applied to just one block. After that, several samples were cored from two blocks. The dry density and water content of several samples produced from two blocks were measured.
        13.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study was aimed to estimate the effect of ensiling period and bacterial inoculants on chemical compositions and fermentation characteristics on rye silage harvested at delayed stage. Rye (Secale cereale L.) was harvested after 20 days of heading stage (29.4% dry matter, DM). The harvested rye forage was applied with different inoculants following: applications of distilled water (CON), Lactobacillus brevis (LBB), Leuconostoc holzapfelii (LCH), or mixture of LBB and LCH at 1:1 ratio (MIX). Each forage was ensiled into 20 L mini bucket silo (5 kg) for 50 (E50D) and 100 (E100D) days in triplicates. The E50D silages had higher in vitro digestibilities of DM (IVDMD, p<0.001) and neutral detergent fiber (IVNDFD, p=0.013), and lactate (p=0.009), and acetate (p=0.011) than those of E100D, but lower pH, lactic acid bacteria (LAB), and yeast. By inoculant application, LCH had highest IVDMD and IVNDFD (p<0.05), while MIX had highest lactate and lowest pH (p<0.05). The CON and LCH in E50D had highest LAB and yeast (p<0.05), whereas LBB in E100D had lowest (p<0.05). Therefore, this study concluded that LCH application improved the nutrient digesbility (IVDMD and IVNDFD) of lignified rye silage, and longer ensiling period for 100 days enhanced the fermentation characteristics of silage compared to ensiling for 50 days.
        4,000원
        16.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to estimate the effect of different cutting lengths on fermentation characteristics and aerobic stability of whole crop rice (WCR) silage. The WCR was harvested at the yellow ripe stage (43.7%, DM), and then cut at 5 (R05), 10 (R10), and 20 cm (R20) of the theoretical length of cut with no cut WCR (R60). Each forage was ensiled into 20 L mini bucket silo (5 kg) for 150 days in quadruplicates. The cutting lengths were not affected the chemical compositions of WCR silage (p > 0.05). The pH (p < 0.001) and concentration of ammonia-N (p = 0.022) in WCR silage were increased linearly with the increase of cutting length. The concentration of lactate had quadratic effect (p = 0.007), which was highest in R20 silage (p < 0.05). The concentration of acetate was increased linearly (p = 0.014), but the concentration of butyrate was decreased linearly (p = 0.033). The lactic acid bacteria count was decreased linearly (p = 0.017), and yeast count had quadratic effect (p = 0.009), which was the highest in R20 silage (p < 0.05). Aerobic stability had strong quadratic effect (p < 0.001), which was the highest in R20 silage (p < 0.05). In conclusion, R60 silage had highest pH by a linear increase of ammonia-N concentration and led to low aerobic stability. While R20 silage had the lowest pH by high lactate concentration and led to high aerobic stability.
        4,000원
        19.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Human and material resource planning is one representative example of Operations Research. Resource planning is important not only in civilian settings but also in military ones. In the Air Force, flight scheduling is one of the primary issues that must be addressed by the personnel who are connected to flight missions. However, although the topic is of great importance, relatively few studies have attempted to resolve the problem on a scientific basis. Each flight squadron has its own scheduling officers who manually draw up the flight schedules each day. While mistakes may not occur while drafting schedules, officers may experience difficulties in systematically adjusting to them. To increase efficiency in this context, this study proposes a mathematical model based on a binary variable. This model automatically drafts flight schedules considering pilot’s mission efficiency. Furthermore, it also recommends that schedules be drawn up monthly and updated weekly, rather than being drafted from scratch each day. This will enable easier control when taking the various relevant factors into account. The model incorporates several parameters, such as matching of the main pilots and co-pilots, turn around time, availability of pilots and aircraft, monthly requirements of each flight mission, and maximum/minimum number of sorties that would be flown per week. The optimal solution to this model demonstrated an average improvement of nearly 47% compared with other feasible solutions.
        4,000원
        1 2 3 4 5