검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 228

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present research focuses on the tribological behavior of the AA5083 alloy-based hybrid surface composite using aluminosilicate and multi-walled-carbon nanotube through friction stir processing for automotive applications. The friction stir processing parameters (tool rotation and traverse speed) are varied based on full factorial design to understand their influence on the tribological characteristics of the developed hybrid composite. The surface morphology and composition of the worn hybrid composite are examined using a field-emission scanning electron microscope and an energy-dispersive x-ray spectroscope. No synergistic interaction is observed between the wear rate and friction coefficient of the hybrid composite plate. Also, adhesive wear is the major wear mechanism in both base material and hybrid composite. The influence of friction stir process parameters on wear rate and the friction coefficient is analyzed using the hybrid polynomial and multi-quadratic radial basis function. The models are utilized to optimize the friction stir processing parameters for reducing the rate of wear and friction coefficient using multi-quadratic RBF algorithm optimization.
        4,800원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The nanostructured dysprosium oxide ( Dy2O3) was synthesized by the co-precipitation method and incorporated with graphitic carbon nitride (g-C3N4) using the ultrasonication method. The resultant product is denoted as Dy2O3/ g-C3N4 nanocomposite which was further used for electrochemical sensing of riboflavin (RF). The physicochemical properties of Dy2O3/ g-C3N4 nanocomposite were examined using several characterization techniques. The obtained results exhibit the nanocomposite formation with the preferred elemental compositions, functional groups, crystalline phase and desired surface morphology. The electrocatalytic performance of Dy2O3/ g-C3N4 nanocomposite was scrutinized with a glassy carbon electrode (GCE) via differential pulse voltammetry (DPV) and cyclic voltammetry (CV) techniques with the conventional three-electrode system. The modified electrode distributes more active surface area suggesting high electrocatalytic activity for the RF detection with two linear ranges (0.001–40 μM and 40–150 μM), a low detection limit of 48 nM and sound sensitivity (2.5261 μA μM−1 cm− 2). Further, the designed sensor possesses high selectivity, excellent stability, repeatability and reproducibility. Finally, the fabricated sensor was successfully estimated for the detection of RF in actual food sample analysis using honey and milk with better recovery.
        5,200원
        6.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fluorescent nanostructures based on carbon, or carbon dots, are attracting much attention and interest because of their diverse properties which can be applied in several fields of knowledge, such as optics, biomedicine, environmental research, among others. Such properties are in part, derived from its intrinsic luminescence from tunable functional groups. In this work, we produced carbon nanodots (CND) using agro-industrial residues, such as Lolium perenne and malt bagasse. The methods used were conventional hydrothermal syntheses and microwave-assisted hydrothermal synthesis. To the best of our knowledge, this is the first time that carbon dots synthesized from this ryegrass type are reported. The synthesis methods were one step (no catalyst, base, or acid were added for passivation), and the functional groups responsible for the luminescence and high solubility in water were identified by infrared spectroscopy, being mainly C=O, C–OH, C–N, and N–H. According to our theoretical studies, the C=O group introduced a new energy level for electronic transitions that can affect the emission properties. Fluorescence images of osteoblasts using CNDs were acquired and their chelating property towards Pb2+ and Cr6+ detection was tested.
        4,200원
        7.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated non-graphitizable hard carbon using orange peel with mesoporous structure has been prepared by pyrolyzation at 700, 800, 900 °C using chemical activation method. The activated orange peel-derived hard carbon has been characterized for its mesoporous and disordered structure. TG-DSC gives the information for the changes about sample composition and thermal stability of the materials. Increasing the carbonization temperature for orange peel precursor using NaOH as activating agent, elevates the pore diameter, which thereby facilitating the insertion of Na+. Raman and X-ray diffraction confirms the presence of disordered carbon. The surface morphology of the material was analyzed by scanning eletron microsope and nitrogen ( N2) adsorption and desorption analysis give the morphology, mesopore size (3.374, 3.39 and 4 nm) and surace area (60.164, 58.99 and 54.327 m2/g) of the orange peel-derived hard carbon. Hence, this work strongly evidences that the biomass-derived hard carbon with good porosity and paves way of superior electrochemical performance for emerging sodium ion batteries.
        4,000원
        8.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The use of recycled materials, such as the fine recycled aggregate made from concrete waste and carbon fiber (CF) product of industrial waste, for the manufacture of conductive recycled mortars (CRM), transforms the mortar base cement normally made with cement:sand in a sustainable multifunctional material, conferring satisfactory mechanical and electrical properties for non-structural uses. This action provides ecological benefits, reducing the use of natural fine aggregates from rivers and the amount of concrete waste deposited in landfills resulting from construction waste. In this investigation the effect of the addition of CF on electrical properties in hardened, wet and dry state, electric percolation in dry state and fluidity of the wet mixture of a cement based CRM was evaluated: fine recycled aggregate: graphite powder, CRM specimens with dimensions of 4 × 4 × 16 cm. were manufactured for 3, 7 and 28 days of age and sand/cement ratios = 1.00, graphite/cement = 1.00, water/cement = 0.60 and CF = 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0% compared to the weight of cement. The results demonstrated the effect of the addition of CF in CRM, reducing fluidity of the mixtures due to the opposition generated by its physical interaction of CF with recycled sand or recycled fine aggregate and graphite powder (GP), in its case, placing the electric percolation percolation at 0.30% and 0.45% of CF for CRM with and without GP, respectively. Increases in electrical conductivity (EC) without the presence of GP are defined by the contact between the CF and the conductive paths formed. In contrast, with the presence of GP, the EC is defined by the contact between the CF and the GP simultaneously, forming conductive routes with greater performance in its EC.
        4,600원
        9.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon lives along with us in our daily life and has a vital role to play. It is present in the air and within all living organisms. Due to its handheld advantage in nano-properties that are utilized in many applications, carbon substrates came under limelight during the recent decades. Carbon substrates are most widely used in cancer detection, catalysis, bio-sensing, adsorption, drug delivery, carbon capture, hydrogen storage, and energy. Alongside, composite materials with carbon as an additive are also developing rapidly in applications like infrastructures, automobile, health care, consumer goods, etc. which became an integral chunk of our life. In this paper different types of carbon substrates and its applications, properties of the substrates were reviewed. The applications and methods of synthesis of carbon substrates are also dealt with a broad perspective.
        6,100원
        10.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Engineering the microstructure of the carbonaceous materials is a promising strategy to enhance the capacitive performance of supercapacitors. In this work, nanostructured Black Pearl (1500 BP) carbon which is a conductive carbon being commercially used in printing rolls, conductive packaging, conductive paints, etc. is analyzed for its feasibility as an electrode material for Electric Double-Layer Capacitors (EDLCs). To achieve that commercial Black Pearl (BP), carbon is treated with mild acid H3PO4 to remove the impurities and enhance the active sites by regulating the growth of agglomerates and creating micropores in the nano-pigments. Generally, the coalescence of nanoparticles owing to their intrinsic surface energy has tendency to create voids of different sizes that act like meso/micropores facilitating the diffusion of ions. The electrochemical performance of BP carbon before and after chemical activation is investigated in aqueous ( H2SO4, KOH and KCl) and a non-aqueous electrolyte (1 M TEMABF4 in acetonitrile) environment employing different electrochemical techniques such as Cyclic Voltammetry (CV), Galvanostatic charge/discharge (GCD) and Electrochemical Impendence Spectroscopy (EIS). The chemically activated BP carbon delivers the highest specific capacitance of ∼156 F g−1 in an aqueous electrolyte, 6 M KOH. The highest specific power, ~ 15.3 kW kg−1 and specific energy, 14.6 Wh kg−1 are obtained with a symmetric capacitor employing non-aqueous electrolyte because of its high working potential, 2.5 V.
        4,000원
        11.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Processing and characterization of graphene (Gr)-reinforced aluminium alloy 7075 (AA7075) microcomposites and nanocomposites are reported in this work. Composites are fabricated by mechanical alloying process at wet conditions. The bulk composites are prepared by uniaxial die pressing to get higher densification and sintered in an inert atmosphere. Density of the nanocomposites is higher than the microcomposites due to the reduction of grain size by increased milling time. X-ray diffraction (XRD) analysis confirms graphene interaction with the AA7075 matrix lattice spaces. The effective distribution of graphene with aluminium alloy is further confirmed by the Transmission Electron Microscopy (TEM) analysis. The hardness of the composites proportionally increases with the graphene addition owing to grain refinement. Wear morphology is characterized using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Microcomposites reveal abrasive and ploughing wear mechanism of material removal from the surface. Nanocomposites show adhesive wear with delamination and particle pull-out from the material surface.
        4,300원
        12.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The energy demands of the world have been accelerating drastically because of the technological development, population growth and changing in living conditions for a couple of decades. A number of different techniques, such as batteries and capacitors, were developed in the past to meet the demands, but the gap, especially in energy storage, has been increasing substantially. Among the other energy storage devices, supercapacitors have been advancing rapidly to fill the gap between conventional capacitors and rechargeable batteries. In this study, natural resources such as pistachio and acorn shells were used to produce the activated carbons for electrode applications in a supercapacitor (or an electrical double-layer capacitor— EDLC). The activated carbon was synthesized at two different temperatures of 700 °C and 900 °C to study its effect on porosity and performance in the supercapacitor. The morphology of the activated carbon was studied using scanning electron microscopy (SEM). A solution of tetraethylammonium tetrafluoroborate ( TEABF4)/propylene carbonate (PC) was prepared to utilize in supercapacitor manufacturing. The performance of the EDLC was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy. Activated carbons from both the pistachio and acorn shells synthesized at 700 °C in argon gas for two hours exhibited better surface textures and porosity. There activated carbons also exhibited more capacitor-like behavior and lower real impedances, indicating that they would have superior performance compared to the activated carbons obtained at 900 °C. This study may be used to integrate some of natural resources into high-tech energy storage applications for sustainable developments.
        4,300원
        14.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Dromedary camel (Camelus dromedaries) is an important species because of its ability to produce good quality meat, milk, and fibers under harsh environmental conditions. Camels are also crucial for transportation, racing, and as draft animals in agriculture. Therefore, dromedary camels play a critical role in the economy for millions of people living in the arid part of the world. The inherent capability of camels to produce meat and milk is highly correlated with their reproductive performance. Compared with other domestic species, the reproductive efficiency in camelids is low. Although recent reproductive technologies such as in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) have been successfully applied to camelids and the birth of live offspring following these technologies has been reported; in vitro embryo production (IVP) has lagged in this species. The development of the IVP system for dromedary camels may be a useful tool for the genetic improvement of this species. IVP in farm animals includes three main steps; in vitro maturation (IVM) of an oocyte, IVF of a matured oocyte, and in vitro culture (IVC) of fertilized oocyte up to the blastocyst stage. This review aims to summarize various factors that influence oocyte quality, IVM, and in vitro embryo development in dromedary camel.
        6,000원
        15.
        2019.12 구독 인증기관 무료, 개인회원 유료
        Fatigue is not a trivial issue and needs much attention. On the other hand, fatigue among seafarers could lead to accidents at sea due to their inability and ineffectiveness in carrying out their work. Some were caused by sleepiness and lack of vigour, which, could not only affect their safety but compromising on other seafarers as well. In this study, factors that cause fatigue among seafarers were examined analytically and their quantitative priorities were determined using Analytic Hierarchy Process (AHP) method. Additionally, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is used to identify the best alternatives in minimizing fatigue among seafarers. For this, data is collected through interview involving those working in academic and maritime industry with more than 5 years of experiences in dealing with seafarers. The AHP result shows that fitness is the main cause that could affect fatigue on seafarers’ reliability. Besides, TOPSIS result shows that a well-maintained shipboard is the best way in sustaining seafarers’ energy. In sum, fatigue among seafarers could influence on safety and may lead towards precarious health issue over a long-term.
        4,000원
        16.
        2019.12 구독 인증기관 무료, 개인회원 유료
        Halal transportations will ensure that the Halal status of the products will be preserved. Halal certification is believed to increase the operation cost for the transport providers, which reflect the price paid by customers who choose to buy products transported by Halal transportation. Hence, it is worthwhile to investigate the willingness of Muslim consumers to pay extra for the Halal transportation cost. The study aims to identify factors influencing Muslim consumers’ attitude towards their willingness to pay for Halal transportation. Using the stimulus-organism-response model, attitude which represents the organism factor will be treated as a mediator for variables representing the stimulus factors and the variable for the response. On the other hand, the study will also examine the effect of knowledge as a moderating factor. The data was collected from Muslim consumers in Kuala Lumpur. Applying the purposive sampling method with a self-administered survey, 202 respondents agreed to participate in the study. The findings revealed that awareness and perceived behavioural control are a stimulus towards attitude, and attitude is a significant organism on willingness to pay. The study also found that attitude mediates the relationship between awareness and perceived behavioural control towards the willingness to pay for Halal transportation. Additionally, the knowledge has a moderating effect of the relationship between attitude and the willingness to pay. The findings of the study are not only beneficial for the Muslim community in Malaysia, but also the Muslims around the world.
        4,200원
        17.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The normal feeding approach of goats might be due to their precise anatomical and physiological characteristics of entity, which permit them to be highly selective, to eat legume silages and wild green grass. This review has been designed to consider the grazing behavior, fodder selection, and feed composition of goats. Various herbs and corns consumed by goats have numerous nutritive resources. Based on the general herbaceous intake activities and behavior of goats, they prefer wild grass such as grass grown in the steep hills than soft grass. Because the digestion capacity of cellulose feed has higher digestion level compared to other non-ruminants within rumen and it is advantageous to use wild forest or mountain grass which comprises high proportion of cellulose feed for goat. In South Korea, there are abundant feed resources for goats because of occupying large areas of mountains. Thus, goat production and feeding costs could be reduced if plants are used from the wild forest as a feed for goats relative to grassland grazing. Also, it is expected to contribute in improvement of goat farming with harmonious relationship between the grassland and wild forest while satisfying animal welfare and physiological desires of livestock.
        4,000원
        18.
        2019.06 구독 인증기관 무료, 개인회원 유료
        The IMO Standard Marine Communication Phrases (SMCP) has been established purposely to enhance the greater safety of vessel’s navigation by standardizing the language used among seafarers. However, accidents are still occurred due to communication failures among onboard merchant vessels’ crews. It is worth mentioning that the major cause of marine accidents is human error (80%) where one-third from it was due to communication failures. Ineffective communication, different culture and language among seafarers onboard are some instigators of human error that lead to accidents in marine operations. Therefore, the primary aim of this paper is to investigate and evaluate the causal factors that contributes to communication failures onboard merchant vessels. Then, this paper recommends possible solutions for minimizing the communication failures among seafarers. To achieve this research objectives, two decision-making tools which are the Analytical Hierarchy Process (AHP) and Evidential Reasoning (ER) was applied. Data and judgments are obtained from domains experts from four marine training providers and eight shipowners in Malaysia. The result has shown that lack of SMCP knowledge, prejudice and dialect varieties are the most significant factors that contribute to the communication failures onboard merchant vessels. Few suggestions and opinions from the experts are proposed in this paper. This research can assist marine training providers and shipowners to identify and evaluate the causal factors of communication failures thus corrective action can be taken.
        4,200원
        19.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present the analysis of KMT-2016-BLG-0212, a low flux-variation (Iflux−var ∼ 20 mag) microlensing event, which is in a high-cadence (Γ = 4hr −1) field of the three-telescope Korea Microlensing Telescope Network (KMTNet) survey. The event shows a short anomaly that is incompletely covered due to the brief visibility intervals that characterize the early microlensing season when the anomaly occurred. We show that the data are consistent with two classes of solutions, characterized respectively by low-mass brown-dwarf (q = 0.037) and sub-Neptune (q < 10−4) companions. Future high-resolution imaging should easily distinguish between these solutions.
        4,000원
        20.
        2018.12 구독 인증기관 무료, 개인회원 유료
        In late 1950’s, the beginning of container revolution has started a new paradigm shift in maritime industry worldwide. This new paradigm has become a major reason for seaport systems to prepare their physical capacity, space availability, multi-modalism, transport connectivity via regionalisation. However, in early 2010’s the introduction of industrial revolution 4.0 (IR4.0) which starts the era of immersive digitalization proved that seaport systems need to be prepared to face pattern of unstable magnitudes in dynamic maritime trade. Therefore, this paper analyses key components required for Malaysian seaport system to be aligned with the key requirements in IR4.0. By employing document analysis, this research analyses the challenges faced by Malaysian seaport system as well as suggests strategies to muddle through the key requirements of IR4.0. The findings from this research indicate that Malaysian seaport system need to be improved by enforcing skill-based education system, flexibility in labour structure, development in skill and competence level as well as improvement in infrastructure suitability. The findings from this research also reflect significant strategies to improve seaport system in the era of IR4.0 including enhancing requirements for intermodal terminals, improving preparation for seaport alliances, developing mechanism for interoperability, improving utilisation of intra and interregional economic development as well as scrutinising safety and security.
        4,800원
        1 2 3 4 5