Hertwig's epithelial root sheath (HERS) consists of bilayered cells derived from the inner and outer dental epithelia and plays important roles in tooth root formation as well as in the maintenance and regeneration of periodontal tissues. With regards to the fate of HERS, and although previous reports have suggested that this entails the formation of epithelial rests of Malassez, apoptosis or an epithelialmesenchymal transformation (EMT), it is unclear what changes occur in the epithelial cells in this structure. This study examined whether HERS cells undergo EMT using a keratin-14 (K14) cre:ROSA 26 transgenic reporter mouse. The K14 transgene is expressed by many epithelial tissues, including the oral epithelium and the enamel organ. A distinct K14 expression pattern was found in the continuous HERS bi-layer and the epithelial diaphragm were visualized by detecting the β-galactosidase (lacZ) activity in 1 week postnatal mice. The 2 and 4 week old mice showed a fragmented HERS with cell aggregation along the root surface. However, some of the lacZ-positive dissociated cells along the root surface were not positive for pan-cytokeratin. These results suggest that the K14 transgene is a valuable marker of HERS. In addition, the current data suggest that some of the HERS cells may lose their epithelial properties after fragmentation and subsequently undergo EMT.
The aim of this study was to evaluate light emitting diodes (LEDs) as the potential attractants against Spodoptera exigua on various wavelengths, light intensity and light duration, and compared to that of commercial control, flourescent lamp. The phototactic response to S. exigua was tested by single and complex wavelengths. The single wavelengths were composed as follows: blue (470 nm), green (520 nm), yellow (590 nm) and red (625 nm). The complex wavelengths was combined with two single wavelengths, such as blue-green, blue-yellow, blue-red, green-yellow, green-red and yellow-red. When the optimal light condition was investigated, the all light treatments attracted the highest number of S. exigua at 40 lux intensity and 60 min duration. Based on the single wavelengths under optimal light condition, the green LED exhibited the highest attraction rate (88.9%), followed by blue (81.1%), yellow (63.3%) and red (56.7%), respectively. In case of complex wavelengths under same conditions, the bluegreen complex (93.3%) had the significantly highest attractive activity, whereas blue-yellow, blue-red, green-yellow, green-red and yellow-red wavelengths were slightly decreased in comparison with single wavelengths. These data clearly show that blue-green complex had the greatest attraction against S. exigua.
Sweet potato whitefly, Bemisia tabaci, is one of the most common and critical green house pests in the world. The object of this study was to evaluate the attraction effect of various colored high power light emitting diodes (HPLEDs) against B. tabaci. These insects with diverse HPLEDs were examined by LED equipped chamber in the dark room at 27±0.5℃ and 60±5% relative humidity. Evaluated light-sources were blue (470±10 nm), green (520±5 nm), yellow (590±5 nm) and red (625±10 nm) HPLEDs, and tested with various illuminance intensity at 20, 40, 60, 80 and 100 lux. Base on the attraction rates, the green (94.4%) HPLED was the most effective against B. tabaci, followed by yellow (78.9%), blue (71.1%) and red (60%) HPLEDs. Furthermore, these data show that both the 80 lux intensity and 40 min light-exposure time using the green HPLED was the most suitable for attraction of B. tabaci. Putting all results, our data will provide the useful information for eco-friendly pest control against B. tabaci.
The working mechanism of bisphosphonate on bone cells is unclear despite its powerful inhibitory activity on bone resorption. The differentiation and activation of osteoclasts are essential for bone resorption and are controlled by the stimulatory RANKL and inhibitory OPG molecules. Teeth exhibit a range of movement patterns during their eruption to establish their form and function, which inevitably accompanies peripheral bone resorption. Hence, the mandible, which contains the teeth during their eruption processes, is a good model for revealing the inhibitory mechanism of bisphosphonate upon bone resorption. In the present study, RANKL and OPG expression were examined immunohistochemically in the mandible of rats with developing teeth after alendronate administration (2.5 mg/kg). The preeruptive mandibular first molars at postnatal days 3 to 10 showed the developing stages from bell to crown. No morphological changes in tooth formation were observed after alendronate administration. The number of osteoclasts in the alveolar bone around the developing teeth decreased markedly at postnatal days 3, 7 and 10 compared with the control group. RANKL induced strong positive immunohistochemical reactions in the dental follicles and stromal cells around the mandibular first molar. In particular, many osteoclasts with strongly positive reactions to RANKL appeared above the developing mandibular first molars at postnatal days 3 and 10. Immunohistochemical reactions with RANKL after alendronate administration were weaker than the control groups. However, the immunohistochemical reactivity to OPG was stronger after alendronate administration, at postnatal days 3 and 10. These results suggest that alendronate may decrease bone resorption by regulating the RANKL/OPG pathway in the process of osteoclast formation, resulting in a delay in tooth eruption.
Teeth develop via a reciprocal induction between the ectomesenchyme originating from the neural crest and the ectodermal epithelium. During complete formation of the tooth morphology and structure, many cells proliferate, differentiate, and can be replaced with other structures. Apoptosis is a type of genetically-controlled cell death and a biological process arising at the cellular level during development. To determine if apoptosis is an effective mechanism for eliminating cells during tooth development, this process was examined in the rat mandible including the developing molar teeth using the transferase-mediated dUTP-biotin nick labeling (TUNEL) method. The tooth germ of the mandibular first molar in the postnatal rat showed a variety of morphological appearances from the bell stage to the crown stage. Strong TUNEL-positive reactivity was observed in the ameloblasts and cells of the stellate reticulum. Odontoblasts near the prospective cusp area also showed a TUNEL positive reaction and several cells in the dental papilla, which are the forming pulp, were also stained intensively in this assay. Our results thus show that apoptosis may take place not only in epithelial-derived dental organs but also in the mesenchyme-derived dental papilla. Hence, apoptosis may be an essential biological process in tooth development.
This study presented a development of a phototactic chamber used for pest monitoring. The chamber was constructed by opaque acrylic body. Transparent acrylic wall of the chamber for light-exposure were fitted at both side end parts of the inside chamber. Side parts of the outside chamber were made of removable cover in combination with the air circulation system and light source such as LED or fluorescent. The insect entrance holes was positioned at the center part of the chamber to efficiently dispersed pests, and then nylon net was equipped inside the chamber to prevent the escape of inserted pests. Two opaque partition walls of the inside chamber were made of the movable plate, in order to the control of the light-exposure and the response termination. We also carried out behavioral experiment against various pest species by using the phototactic chamber. Consequently, the phototactic chamber was confirmed suitable result of behavioral experiment. Therefore, we believed that the test chamber help to understand the phototactic responses of various pests.
To response evaluation of high power light emitting diodes (HPLEDs) as potential attractants to the Spodoptera exigua adults, we investigated the attractiveness of specific wavelength, illuminance intensity and light-exposure time, and compared them to the fluorescent. The all light treatments with the 40 lux intensity attracted the significantly highest number of S. exigua. The optimal light-exposure time exhibited the highest attraction rate at the 60 min. When the attraction and repellent rate in the optimal conditions to the S. exigua was surveyed, the white HPLED exhibited the highest attraction rate (91.1%), whereas the red HPLED exhibited the most repellent rate (33.3%). When evatuated of illuminance efficiency with fluorescent as control, white and red HPLED were found to be 9.14 and 10.34 times more efficient than fluorescent. These data clearly show that both the 40 lux intensity and the 60 min light-exposure time by using the white HPLED was the most suitable for attraction of the S. exigua.
The purpose of this study was to examine the interfacial reaction between diamond grits and Ni-based, Ag-based, brazing filler metal, respectively. The morphology of the interface between diamond grits and Ni-based, filler metal exhibited a very good condition after this heat treatment. Cr-carbide and Ni-rich compounds were detected by XRD analysis in the vicinity of the interface between diamond grits and Ni-based, filler metal after vacuum induction brazing. Chromium carbide is considered to play an important role in the high bonding strength achieved between diamonds grits and the brazing alloy.
We found that the """interface reaction between Ni-based alloy bond, diamond, and steel core is very critical in bond strength of diamond tool. None element from metal bond diffuses into the steel core but the Fe element of steel core was easily diffused into the bond. This diffusion depth of Fe has a great effect on the bonding strength. The Cr in steel core accelerated the Fe diffusion and improved the bond strength, on the other hand, carbon decreased the strength. Ni-based alloy bond including Cr was chemically bonded with diamond by forming Cr carbide. However, the Cr and Fe in STS304 were largely interdiffused, the strength was very low. The Cr passivity layer formed at surface of STS304 made worse strength at commissure in brazing process.
Currently Chemical Mechanical Planarization (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. Especially the CMP pad conditioner, one of the diamond tools, is required to have strong diamond cohesion. Strong cohesion between diamond and metal matrix prevents macro scratch on the wafer during CMP Process. Typically the diamond tool has been manufactured by sintered, brazed and electro-plated methods. In this paper, some results will be reported of cohesion between diamond and metal matrix of the diamond tools prepared by three different manufacturing methods. The cohesion force of brazed diamond tool is found stronger than the others. This cohesion force is increased in reverse proportion to the contact area of diamond and metal matrix. The brazed diamond tool has a strong chemical combination of the interlayer composed of Cr in metal matrix and C in diamond, which enhance the interfacial cohesion strength between diamonds and metal matrix.
As model waterborne acrylic coatings, mono-dispersed poly(butyl acrylate-methyl methacrylate) copolymer latexes of random copolymer and core/shell type graft copolymer were prepared by seeded multi-staged emulsion polymerization with particle size of 180~200 nm using semi-batch type process. Sodium lauryl sulfate and potassium persulfate were used as an emulsifier and an initiator, respectively. The effect of particle texture including core/shell phase ratio, glass transition temperature and crosslinking density, and film forming temperature on the film formation and final properties of film was investigated using SEM, AFM, and UV in this study. The film formation behavior of model latex was traced simultaneously by the weight loss measurement and by the change of tensile properties and UV transmittance during the entire course of film formation. It was found that the increased glass transition temperature and higher crosslinking degree of latex resulted in the delay of the onset of coalescence of particles by interdiffusion during film forming process. This can be explained qualitatively in terms of diffusion rate of polymer chains. However, the change of weight loss during film formation was insensitive to discern each film forming stages-I, II and III.