This study was conducted from 2022 to 2024 at the Grassland and Forage Crops Division, National Institute of Animal Science (RDA), in Cheonan, Korea, to develop a medium-maturing variety of Italian ryegrass (Lolium multiflorum Lam.). The newly developed tetraploid cultivar, named ‘Spider’, is characterized by its green leaves, semi-erect growth habit in late autumn, and erect growth habit in mid-spring. With a heading date of May 16, ‘Spider’ is classified as a medium-maturing variety. Compared to the control cultivar ‘Kowinmaster’, ‘Spider’ has a 1.0 mm wider leaf blade, a 1.6 cm longer leaf blade, and is 5 cm taller in plant height. Its dry matter yield (10,169 kg/ha) is significantly higher than that of ‘Kowinmaster’ (p<0.05). The crude protein content of ‘Spider’ is 10.4%, which is 0.2% higher than that of the control. Additionally, ‘Spider’ has a neutral detergent fiber (NDF) content of 49.5% and an acid detergent fiber (ADF) content of 26.6%, showing a 2.2% lower NDF and a 0.2% higher ADF compared to ‘Kowinearly’.
The commercial feed additive, native rumen microbes (RC), derived from a diverse microbial community isolated from the rumen of Hanwoo steers is being explored to enhance rumen fermentation and improve ruminant feed utilization. This study evaluated the impact of native rumen microbes supplementation on methane emissions, microbial diversity, and fermentation efficiency on in vitro assessment. Treatments were as follows: CON (basal diet, without RC); T1 (basal diet + 0.1% RC); T2 (basal diet + 0.2% RC). Rumen fermentation parameters, total gas, and methane production were assessed at 12, 24, and 48 h of incubations. The in vitro gas production was carried out using the Ankom RF Gas Production System. Supplementation of RC significantly reduced the total gas production at 12, 24, and 48 hours of incubation (p < 0.05). Volatile fatty acid concentrations were increased, while acetate and propionate were decreased (p < 0.05) at 48 h by the supplementation of RC. Notably, the 0.1% inclusion level of RC significantly reduced methane production by 28.30% and 21.21% at 12 and 24 hours. Furthermore, microbial diversity analysis revealed significant shifts (p < 0.05) in bacterial composition between the control and treatment groups, while supplementation also promoted the growth of bacterial populations, such as Succiniclasticum. These findings suggest that native rumen microbes supplementation, particularly at 0.1% inclusion level, can enhance rumen microbial composition while significantly reducing methane production in vitro.
This study investigated the flowering response of three Korean native Aster species, namely A. hayatae, A. spathulifolius, and A. koraiensis, to varying photoperiods. Three-month-old plants propagated from cuttings were grown under four different photoperiods: 9, 12, 14, and 16 h. Aster hayatae flowered under all conditions, with flowering rates of 92%, 85%, 65%, and 27% under 9-, 12-, 14-, and 16-h photoperiods, respectively. Flowering in A. hayatae was promoted by shorter photoperiods, classifying it as a facultative short-day plant. Aster spathulifolius flowered only under 9- and 12-h photoperiods, with no significant difference between these treatments, suggesting that the species is an obligate short-day plant. However, given the low A. spathulifolius flowering rates of 27% and 13% under 9- and 12-h photoperiods, respectively, further research is required. Aster koraiensis did not flower under any photoperiod, possibly due to vernalization requirements or juvenility. These findings offer valuable insights into the photoperiodic flowering responses of these three Korean native Aster species, enhancing our understanding of their ecological traits and potential horticultural applications.
본 논문은 라이소자임이 칸디다 알비칸스에 항균효능이 있음을 발견하였고 라이소자임의 분해 절편도 또한 항균효능이 있는지 단백질 분해 효소인 트립신을 처리하여 확인해 보았다. 130개의 아미노산 으로 구성된 14 kDa 단백질인 라이소자임을 약 24 kDa의 분자량을 가지는 단백질 분해 효소인 트립신으 로 분해 하였다. 분해된 생성물은 고성능 액체 크로마토그래피인 분석용 및 제조용 HPLC를 사용하여 분 석 및 분리하였다. 이를 통해 효율적인 라이소자임 소화를 위한 최적 조건을 확인하고, 분해된 펩타이드 절 편들을 분리하였다. 효능평가 결과, 일부 펩타이드 절편들이 칸디다 알비칸스에 강한 항균 활성을 보임을 확인하였으며 몇몇은 활성이 줄어드는 결과를 보였다.