This study explores the contemporary reinterpretation of traditional suit design through the lens of post-structuralist philosopher Jacques Derrida’s concept of decentralization. The objective is to systematically analyze the diverse expression methods of decentralized suits in contemporary fashion and identify their design characteristics, thus exploring various design possibilities for decentraliz suits. To achieve this, the study examines the deconstructivist fashion collections of notable designers such as Martin Margiela, Rei Kawakubo of Comme des Garçons, Alexander McQueen, and Thom Browne, analyzing 269 decentralized suits from their men’s collections from 2009 to the present. The methods of decentralization are categorized based on the structure (composition), details, and materials of the garments, are classified into deconstruction, discontinuity, and disorder. Specific expression methods include irregular wearing, layering, asymmetry, and distortion for deconstruction; omission, heterogeneous insertion, material transition, and separation for discontinuity; and tearing, graffiti, and unfinished elements for disorder. The identified design characteristics are as follows: gender-neutral and category-free, which dismantles the rigid formality and masculine image of suits to allow flexible and diverse gender expressions; integration of unconventional elements, which combines traditional suit design with non-traditional details like ruffles, strings, unfinished edges, and graffiti to create new designs; and sustainable design, which utilizes the deconstruction and recombination of existing suits to recycle discarded suits, making it suitable for upcycling.
Italian ryegrass (Lolium multiflorum Lam.) is one of the most widely grown winter forage crops in Korea, but its yields are known to be greatly affected by drought that occur frequently in spring. This study aimed to compare the growth and tolerance response characteristics to drought stress in several Italian ryegrass varieties cultivated in Korea. Twenty-day-old Italian ryegrass was subjected to drought treatment for 4 days, and then the growth and physiological responses of the plants were compared. Drought stress reduced leaf length, fresh weight, and dry weight in all Italian ryegrass varieties compared to the control. In addition, chlorophyll content was significantly decreased in all varieties treated with drought stress, but Fv/Fm was significantly decreased only in Winter hawk. For H2O2 and malondialdehyde (MDA) contents, Winter hawk showed the highest increase and New dawn showed the least increase. In terms of relative water content (RWC), New dawn showed the least decrease and Winter hawk showed the greatest decrease. These results indicate that New dawn is relatively drought-tolerant and Winter hawk is a drought-sensitive variety, indicating that each variety of Italian ryegrass has different drought tolerance mechanisms, which may provide basic insight for the development of tolerant varieties in the future.
Drought stress is one of the major factors that reduce plant growth and productivity. This study was conducted to investigate the effect of exogenous acetic acid pretreatment on drought stress tolerance response in plants. Fourteen-day-old alfalfa plants were pretreated with 15 mM acetic acid, and then subsequently subjected to drought stress for 6 days. The fresh weight and relative water content in the leaves of acetic acid pretreated alfalfa plants were increased compared to the control group. The chlorophyll and carotenoid contents were slightly decreased in the acetic acid treatment. The H2O2 and proline contents were also significantly decreased in the acetic acid treatment. These results suggest that the scavenging mechanism of reactive oxygen species in alfalfa activated by acetic acid pretreatment is involved in conferring tolerance to drought stress.
A new variety of Alfalfa (Medicago sativa L.), named 'Alfaking' was developed between 2015 and 2023 at the Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Republic of Korea. The variety was produced through artificial hybridization, with ‘Paravivo’ serving as the maternal line and ‘WL514’ as the paternal line. ‘Alfaking’ underwent field tests across four regions (Cheonan, Pyeongchang, Jeongeup, and Jinju) to evaluate its agronomic characteristics and forage production over two years (2022-2023). The dry matter yield of ‘Alfaking’ reached 22,516 kg/ha, which is 11% higher than the control variety, ‘Vernal.’ ‘Alfaking’ exhibited 2.1% higher crude protein content than ‘Vernal’ in forage nutritive value. The development of this new alfalfa variety, which exhibits excellent adaptability to challenging environmental conditions, is expected to enhance forage cultivation and productivity in Korea.
Due to climate change and the expansion of cultivation areas through the use of reclaimed land, changes in the selection of Italian ryegrass (Lolium multiflorum L.) varieties are anticipated. This study was conducted to compare the growth characteristics before overwintering, productivity, and feed value of eight Italian ryegrass varieties with different maturing stages under the same cultivation conditions. The variety ‘Lm4ho’, a medium-maturing type, showed superior growth characteristics before overwintering, including plant height, leaf length, and leaf width. The heading date was advanced in all varieties, with a greater degree of advancement observed in varieties with earlier heading dates. When harvested at the heading stage of the early-maturing types, the dry matter yield of the medium-maturing types was not significantly different from that of the early-maturing types. However, when harvested at the heading stage of the medium-maturing types, the dry matter yield was higher than that of the early-maturing types. Specifically, ‘Lm4ho’ produced 2,518 kg/ha more than ‘Kowinearly’. The late-maturing variety IR901 and the medium-maturing varieties ‘Lm4ho’ and ‘Kowinmaster’ showed statistically superior dry matter yields. In terms of forage value, including crude protein (CP), total digestible nutrients (TDN), and relative feed value (RFV), the medium- and late-maturing types outperformed the early-maturing types. Notably, ‘Lm4ho’, ‘IR 901’, and ‘Hwasan 104’ were evaluated as suitable varieties for high-quality forage production. These results suggest that medium-maturing varieties may be suitable for double cropping in the central regions due to climate change. We propose that future breeding of Italian ryegrass should expand from focusing on cold tolerance and early-maturing varieties to include mediumand late-maturing varieties that consider both productivity and quality.
This study investigates the effects of a sulfur spa product on the skin and hair health of dogs. With the rise in environmental pollution and health threats to pet dogs, interest in natural, non-irritating skin care products for dogs has grown. The study involved 15 Maltese dogs divided into three groups: a control group only shampooed, a water group soaked in tap water post-shampoo, and a sulfur group soaked in sulfur-infused tap water post-shampoo. Measurements of skin moisture, oil, skin barrier, and pH were taken from the dogs' back and abdomen after 60 minutes of treatment over six weeks. Additionally, skin condition and hair cuticles were analyzed using microscopes. Results showed that the sulfur group had significantly higher skin moisture levels in both the back and abdomen compared to the control and water groups. While there was no significant change in skin oil levels and skin barrier, the sulfur group had the lowest skin barrier, indicating a potential reduction in trans-epidermal water loss due to the detoxified sulfur. The pH levels were within the alkaline range typical for dog skin, averaging between 5.7 and 6.5. Visual observations revealed a reduction in dead skin cells and improvements in skin cleanliness. Analysis of hair cuticles showed that sulfur positively impacts hair smoothness and elasticity.
얕은 물에서 선박과 바닥의 상호작용으로 인해, 제한이 없는 깊은 물에서 운항할 때와 비교하여 저항이 증가하는 현상이 발생 한다. 이러한 천수효과에 의해 증가하는 저항은 주로 조파저항에 기인하기 때문에, 본 연구에서는 유람선을 대상으로 LCG(Longitudinal Center of Gravity)의 위치 변경을 통해 성능을 최적화하여 조파저항을 감소시키는 것을 목표로 진행하였다. 수치해석 시뮬레이션을 통해 LCG 위치를 최적화하여 저항의 최소값을 찾고, 이후 수심의 깊이에 따른 영향을 분석하였다. 분석 결과, 37.5% - 52.5% Lpp의 영역에서의 LCG 변화는 총 저항에 큰 영향을 주었으며, 깊은 물의 조건에서는 총 저항의 최대값과 최소값을 비교하였을 때, 72.67%의 큰 차이를 보이 는 반면, 얕은 물 조건에서는 그 차이가 62.97% 정도로 비교적 낮은 차이를 보인다. 수심의 깊이에 따른 효과는 수심이 낮을수록 총 저항 이 증가하는 경향을 보였다. 깊은 물과 비교하여 1.5m의 얕은 물에서는 총 저항이 최대 67.68% 가량 증가하는 것으로 분석되었다. 이 경우 총 저항 증가의 주요 원인은 전체 저항의 84.99%를 차지하는 조파저항에 의한 것으로 판단된다.
One of the key challenges for the commercialization of carbon nanotube fibers (CNTFs) is their large-scale economic production. Among CNTF spinning methods, surfactant-based wet spinning is one of the promising techniques for mass producing CNTFs. Here, we investigated how the coagulation bath composition affects the spinnability and the properties of CNTFs in surfactant-based wet spinning. We used acetone, DMAc, ethanol, and IPA as coagulants and analyzed the relationship between coagulation bath composition and the properties of CNTFs in terms of kinetic and thermodynamic coagulation parameters. From a kinetic perspective, we found that a low mass transfer rate difference (MTRD) is favorable for wet spinning. Based on this finding, we mixed the coagulant bath with solvent in a proper ratio to reduce the MTRD, which generally improved the wet spinning. We also showed that the coagulation strength, a thermodynamic parameter, should be considered. We believe that our research can contribute to establishment of surfactant-based wet spinning of CNTFs.
Background: Balance is the foundation of performing daily activities, and has been proven to be improved by various compression materials. As a new and never-before-seen means, the floss band improves joint range of motion, increases muscle flexibility, and affects balance. Several studies using the short-term application of a floss band to the ankle have been conducted. However, long-term effects of the floss band on the knee warrant further research. Objectives: This study aims to examine the long-term benefits of strength exercises with a floss band applied to the knee for static and dynamic balance. Design: Quasi-experimental design. Methods: A total of 28 participants (four men and 24 women, aged 20–60 years) with no orthopedic knee conditions were recruited and randomized into two groups, with 14 in the group using the strength exercises with floss bands applied to the knee (the floss band group), and 14 in the group using internal rotation of the tibia during mobilization with movements (MWM; the MWM group). A physical therapist with 10 years of clinical experience applied the intervention 10 times, measuring static and dynamic balance before and after the intervention using the Balance Trainer 4. Independent t-tests and paired t-tests were used for statistical analysis, with a significance level of ⍺=.05. Results: Statistically significant effects for static balance and dynamic balance were observed in the comparison from pre- to post-intervention between the floss band and MWM groups (P<.05). Additionally, a statistically significant effect for dynamic balance was noted in the pre- to post-intervention comparison in the floss band group (P<.05). Conclusion: The strength exercises with floss bands applied to the knee are expected to have a long-term effect on improving dynamic balance.
The electrochemical properties of a CFX cathode were improved by defluorination of the surface with a N2 plasma and using a silica wafer. Compared to the N2 plasma treatment alone, when the CFX and silica were reacted together, the C-F bonds were modified and the surface was etched efficiently, so defluorination was enhanced. An electrochemical analysis confirmed that Half-cells prepared by treating CFx and silica with nitrogen plasma exhibited a capacity of about 400 mAh/g at 5C. In addition, it was confirmed that the loss of charge transfer was reduced by up to 71% compared to that for pristine CFX. As shown by a GITT analysis, when the CFx and silica were treated with N2 plasma together, the ion conductivity gradually increased due to a decrease in the ion diffusion barriers and the formation of a carbon layer. Therefore, this is a simple and effective way to improve the conductivities of CFX cathode materials with the energy of a N2 plasma and the silica-fluorine reaction.
Caprine cryptosporidiosis mainly occurs in young goats, with morbidity rates of 80%–100% and mortality over 50% in goat kids. However, limited research has been conducted on the impact of Cryptosporidium parvum, a diarrhea-causing pathogen, on the intestinal microbiota of goat kids. In this study, 16S rRNA-based metataxonomic analysis was performed to compare the microbial diversity and abundance of the gut microbiota between C. parvum-infected and uninfected goat kids. In total, 12 goat fecal samples were collected, including seven naturally C. parvum-infected and five uninfected goats from Chungcheongbuk-do, Korea. After amplification of the V3–V4 hypervariable region of the bacterial 16S rRNA, high-throughput sequencing was performed. The results showed differences in the microbial composition between C. parvum-infected and uninfected groups based on beta diversity. Firmicutes and Bacteroidetes were the most dominant phyla in both groups. However, no significant difference was observed in the Bacteroidetes/Firmicutes ratio between the two groups. Compared with the uninfected group, the C. parvum-infected group showed significantly higher abundances of Tyzzerella nexillis, Lactobacillus johnsonii, Butyricicoccus pullicaecorum, Enterococcus raffinosus, Enterococcus faecalis, and Negativicoccus massiliensis, and significantly reduced abundances of Aerococcus vaginalis, Faecalicoccus pleomorphus, Oribacterium parvum, and Coprococcus comes. These findings indicate that C. parvum infection, which is associated with diarrhea in neonatal goats, induces alterations in the caprine gut microbiota.
This study aimed to reconfirm the sex change scale and pattern of Tegillarca granosa. Although the sex ratio (female : male, female proportion) of T. granosa was 1:2.32 (30.2%) at the initial stage (2011) of the study, it was 1:0.94 (51.5%) after one year (2012) in the same population. The increase of the female proportion was greater in the 2+ year class (23.0%) when compared to the 1+ year class (19.2%). Overall, sex change ratio of 37.6% was observed in this population of T. granosa. The sex change ratio of the 2+ year class (39.3%) was higher than that of the 1+ year class (35.3%). And sex change ratio in the males (42.2%) was higher than that in the females (26.9%). The female proportion was the opposite of the result from 2006~2007, and one of the causes was presumed to be the difference in cumulative water temperature during the gonadal inactive stage (winter).
본 연구는 다국적 기업 해외 자회사 직원의 언어 능력이 본사의 주재원 파견에 어떤 영향을 미치 는지 고찰한다. 전 세계 55개국에 위치한 한국 다국적 기업의 9,580개 해외 자회사를 다층 모델링 을 사용하여 분석한 결과, 현지 노동력의 영어 능력이 낮은 국가에 위치한 해외 자회사에서는 다국 적 기업들이 더 많은 주재원을 파견하는 경향이 있음을 밝혀내었다. 또한, 본 연구는 다국적 기업 의 해외 자회사 현지 운영 기간이 증가함에 따라 현지 노동력의 영어 능력이 낮은 국가에 위치한 자회사 내에서 주재원에 대한 의존도가 현저하게 감소함을 보여준다. 이러한 결과는 현지 노동력의 언어 능력이 상이한 다양한 국가에 진출하여 활동하는 다국적 기업들의 해외 자회사 관리에 있어 의미 있는 이론적, 실무적 시사점을 제공한다.
It was found in this study that fluorinated microporous carbon aerogels with enhanced hydrophobicity could be successfully prepared by direct fluorination to separate water-in-oil emulsions at high flux. The fluorinated carbon aerogel (F-CA) surface treated by the fluorination method had a water contact angle of 151.2° and could immediately absorb oil. In addition, the unique network structure of F-CA and its hydrophobicity allow surfactant-stabilized water-in-oil emulsions to be effectively and simply separated under gravity without requiring external forces such as vacuum or pressurization. The network structure of F-CAs consists of randomly connected spherical particles that form fluorinated permeation channels, which induce high flux during emulsion separation. The F-CA spherical particles have nanosized pores and high hydrophobicity, which repel and trap water droplets to increase the separation purity. Therefore, F-CA exhibited excellent performance, such as high filtrate purity (up to 99.9954%) and flux (up to 11,710 L/m2h). Furthermore, F-CA reusability was demonstrated as it did not lose its hydrophobicity and maintained its performance even after repeated use. This type of aerogel has great potential to be utilized throughout various environmental fields, including oil remediation.