검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 18

        1.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, voltammetry system for realizing high sensitivity nano-labeled sensor of detecting heavy metals was designed, and optimal system operating conditions were determined. High precision digital to analog converter (DAC) circuit was designed to control applied unit voltage at working electrode and analog to digital converter (ADC) circuit was designed to measure the current range of at counter electrode. Main control unit (MCU) circuit for controlling voltammetry system with 150 MHz clock speed, main memory circuit for the mathematical operation processing of the measured current value and independent power circuit for analog/digital circuit parts to reduce various noise were designed. From result of voltammetry system operation, oxidation current peaks which are proportional to the concentrations of Zn, Cd and Pb ions were found at each oxidation potential with high precision.
        4,000원
        2.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present work, Al- composite powders were fabricated using a mechanical milling process and its milling behaviors and mechanical properties as functions of sizes ( , 500 nm and 50 nm) and concentrations (1, 3 and 10 wt.%) were investigated. For achieving it, composite powders and their compacts were fabricated using a planetary ball mill machine and magnetic pulse compaction technology. Al- composite powders represent the most uniform dispersion at a milling speed of 200 rpm and a milling time of 240 minutes. Also, the smaller particles were presented, the more excellent compositing characteristics are exhibited. In particular, in the case of the 50 nm added compact, it showed the highest values of compaction density and hardness compared with the conditions of and 500 nm additions, leading to the enhancement its mechanical properties.
        4,000원
        3.
        2012.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated refinement behaviors of TiC powders produced under different impact energy conditions using a mechanical milling process. The initial coarse TiC powders with an average diameter of 9.3 were milled for 5, 20, 60 and 120 mins through the conventional low energy mechanical milling (LEMM, 22G) and specially designed high energy mechanical milling (HEMM, 65G). TiC powders with angular shape became spherical one and their sizes decreased as the milling time increased, irrespective of milling energy. Based upon the FE-SEM and BET results of milled powders, it was found initial coarse TiC powders readily became much finer near 100 nm within 60 min under HEMM, while their sizes were over 200 nm under LEMM, despite the long milling time of up to 120 min. Particularly, ultra-fine TiC powders with an average diameter of 77 nm were fabricated within 60 min in the presence of toluene under HEMM.
        4,000원
        4.
        2010.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present work, ethylene glycol-based (EG) copper oxide nanofluids were synthesized by pulsed wire evaporation method. In order to explode the pure copper wire, high voltage of 23 kV was applied to the both ends of wire and argon/oxygen gas mixture was used as reactant gas. EG-based copper oxide nanofluids with different volume fraction were prepared by controlling explosion number of copper wire. From the transmission electron microscope (TEM) image, it was found that the copper oxide nanoparticles exhibited an average diameter about 100 nm with the oxide layer of 2~3 nm. The synthesized copper oxide consists of CuO/ phases and the Brunauer Emmett Teller (BET) surface area was estimated to be . From the analyses of thermal properties, it is suggested that viscosity and thermal conductivity of EG-based copper oxide nanofluids do not show temperature-dependent behavior over the range of 20 to . On the other hand, the viscosity and thermal conductivity of EG-based copper oxide nanofluids increase with volume fraction due to the active Brownian motion of the nanoparticles, i.e., nanoconvection.
        4,000원
        5.
        2010.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ethylene glycol-based Cu nanofluids were prepared by pulsed wire evaporation (PWE) method. The structural properties of Cu nanoparticles were studied by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The average diameter and Brunauer Emmett Teller (BET) surface area of Cu nanoparticles were about 100 nm and , respectively. The thermal conductivity and viscosity of copper nanofluid were measured as functions of Cu concentration and temperature. As the volume fraction of Cu nanoparticles increased, both the enhanced ratios of thermal conductivity and viscosity of Cu nanofluids increased. As the temperature increased, the enhanced ratio of thermal conductivity increased, but that ratio of viscosity decreased.
        4,000원
        6.
        2009.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mechanical coating process was applied to form 89 %-hydrolyzed poly vinyl alcohol (PVA) onto boron carbide (B4C) nanopowder using one step high energy ball mill method. The polymer layer coated on the surface of B4C was changed to glass-like phase. The average particle size of core/shell structured B4C/PVA was about 50 nm. The core/shell structured B4C/PVA was formed by dry milling. However, the hydrolyzed PVA of 98~99% with high glass transition temperature (Tg) was rarely coated on the powder. The Tg of polymer materials was one of keys for guest polymer coating on to the host powder by solvent free milling.
        4,000원
        7.
        2008.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Principles and historical background of high pressure liquid jet (HPLJ) technology is presented in the paper. This technology can be applied, among others, for production of nano particles. This target can be achieved in various type of disintegration systems developed and designed on the base of this technology. The paper describes principles of two examples of such systems: HPLJ-reactor, called also a linear comminuting system, HPLJ- centrifugal comminuting system, which prototypes have been manufactured. A linear mill, being high energy liquid jet reactor, has been developed and tested for micronization of various types of materials. The results achieved so far, and presented in the paper, show its potential for further improvement toward nano-size particle production. Flexibility of adjustment of the reactors and the mechanism of the process allows for the creation of particles with unprecedented rheology. The reactor can be especially suitable to micronize, mix and densify materials with a wide range of mechanical properties for various industrial needs. Presented prototypes of comminution systems generate interesting potentials toward production of nano particles. Their performance, based on up today research, confirms expected high efficiency of materials disintegration, which opens a new challenge for industrial applications. The paper points out benefits and area of possible applications of presented technology.
        4,200원
        8.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        On the base of experience in development of Magnetic Powder Composites, and particularly Soft Magnetic Composites, authors are trying to systematize classification and indicate possible development prospective of Magnetic Nanocomposites (MN) technology and their applications in electrical converters. Clear classification and systematization, at an early stage of any materials and technology development, are essential and lead for better understanding and communication between researchers and industry involved. This concern MN as well and it seems to be the right time to make it at present stage of their development. Presented proposal of classification distinguishes various types of MN by their magnetic properties and area of possible applications. It is not a close set of types, and can be extended due to increase of knowledge concern these nanocomposites.
        4,200원
        10.
        2006.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effects of the dispersants, i.e., Hypermer KD-2 and poly(l-vinyl-2-pyrrolidone) (PVP), and their concentration on the dispersion stability of Ni nanoparticles () in ethanol were investigated by using a visual inspection, a transmission profile (Turbiscan), and a zeta potential measurement. The transmission profiles measured by Turbiscan showed that the particle size increased over the entire height of the sample for suspensions with both the dispersants without showing any particle coalescence and sedimentation. The visual inspection also confirmed that the Ni suspensions with Hypermer KD-2 and PVP were very stable for more than a year. The zeta potential values varied from positive to negative with increasing the dispersant's concentration. The dispersion stability of the suspensions was not affected by both the dispersant's concentration and the zeta potential values. The observed suspension stability of Ni nanoparticles was attributed to the steric effect for the Hypermer KD-2 and to the bridging effect for the PVP.
        4,000원
        11.
        2006.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        [ ](R=Pr, Nd, and Sm) was synthesized and their magnetic properties and charge ordering(CO) transition related with lattice dynamics and oxygen vacancy were systematically investigated. The charge disproportion ation(CD) in (R=Pr,Nd) was in which two kins of iron with valence state and were found with ratio of 2:1. In this charge ordering state a sequence of exists aligned along the [111] direction of the pseudocubic perovskite structure. The charge ordering exist in distorted structure involving hybridization. The disordering phases coexist in distorted structure as temprature in creases that is controlled amount of oxygen vacancy. The magnetic hyperfine fields indicate charge tranfering temperature as it dissapeared drastically.
        4,000원
        12.
        2004.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An experimental study on the combustion of superfine aluminum powders (average particle diameter, a: ∼0.1 ) in air is reported. The formation of aluminum nitride during the combustion of aluminum in air and the influence of the combustion scenario on the structures and compositions of the final products are in the focus of this study. The experiments were conducted in an air (pressure: 1 atm). Superfine aluminum powders were produced by the wire electrical explosion method. Such superfine aluminum powder is stable in air but once ignited it can burn in a self-sustaining way due to its low bulk: density (∼0.1 g/㎤) and a low thermal conductivity. During combustion, the temperature and radiation were measured and the actual burning process was recorded by a video camera. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and chemical analysis were performed on the both initial powders and final products. It was found that the powders, ignited by local heating, burned in a two-stage self-propagating regime. The products of the first stage consisted of unreacted aluminum (-70 mass %) and amorphous oxides with traces of AlN. After the second stage the AlN content exceeded 50 mass % and the residual Al content decreased to ∼10 mass %. A qualitative discussion is given on the kinetic limitation for AlN oxidation due to rapid condensation and encapsulation of gaseous AlN.N.
        4,000원
        14.
        2004.06 구독 인증기관·개인회원 무료
        The results obtained are summarized as follows; (1) Boehmite produced in the high temperature and acid region showed a nano fibrous shape with several nm in diameter and several hundreds nm in length having high specific surface areas with a maximum value of . (2) In order to obtain nano fibrous boehmite with high surface areas from nano metal powder, the hydrolysis reaction should be done at a high temperature over , high acidity under pH 6, and terminated before a transition to the bayerite phase.
        15.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The phenomenon of electrical explosion of conductors is considered in the context of the changes in the energy and structural states of the metal at the stages of energy delivery and relaxation of the primary products of EEC. It is shown that these changes are related to the forced interaction of an intense energy flux with matter and to the subsequent spontaneous relaxation processes. The characteristics of nano-sized metal powders are also discussed. The preferential gas media during EEC is Ar+. An increase in (in the range of values studied) leads to a reduction in the metal content. For reactive powders obtained with high metal content, it is necessary to separate the SFAP fractions, which settled on the negative electrode of the electric filter.
        4,000원
        18.
        2002.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Synthesis and compaction of Al-base nano powders by pulsed discharge method were investigated. The aluminum based powders with 50 to 200 nm of diameter were produced by pulsed wire evaporation method. The powders were covered with very thin oxide layer. The perspective process for the compaction and sintering of nanostructured metal-based materials stable in a wide temperature range can be seen in the densification of nano-sized metal powders with uniformly distributed hard ceramic particles. The promising approach lies in utilization of natural uniform mixtures of metal and ceramic phases, e.g. partially oxidized metal powders as fabricated in our synthesis method. Their particles consist of metal grains coated with oxide films. To construct a metal-matrix material from such powder, it is necessary to destroy the hard oxide coatings of particles during the compaction process. This goal was realized in our experiments with intensive magnetic pulsed compaction of aluminum nanopowders passivated in air.
        4,000원