검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 212

        1.
        2024.04 구독 인증기관·개인회원 무료
        먹노린재 합성집합페로몬 후보물질 12종에 대한 유인력을 평가하였다. 페로몬 방출기는 4구 후각계 (Olfacomter)를 사용하였고 4개의 진공관에 각각 후보물질을 투입 후 진공 유압 방식으로 방출하여 포집기에 유인되는 먹노린재의 개채수를 측정하는 방법으로 검정하였다. 4구 후각계 페로몬 평가 방법은 기존 Y-관 후각 계의 문제점인 양방향 선택성과 공간 한정성을 개선하여 평가의 정확성을 향상시켰다. 유인력 평가 결과 12종의 유인제 후보물질 중 Trans-2-Decenal이 먹노린재 실험개체에 대하여 100% 유인력을 보였다. 또한, 선별된 Trans-2-Decenal의 먹노린재 유인력에 대한 유효농도 시험을 진행 한 결과, 50%의 농도에서 유인력이 가장 높았 다. 본 연구를 통해서 선별된 Trans-2 Decenal은 기존의 노린재과에 대한 페로몬 트랩에 비해 먹노린재에 대한 유인 효과가 높을 것으로 사료되었다. 이에 따라, Trans-2 Decenal을 기반으로 한 페로몬 트랩이 상용화된다면 추후의 먹노린재 방제 효과가 높아질 것으로 기대된다.
        2.
        2024.04 구독 인증기관·개인회원 무료
        고자리꽃파리는 양파 및 마늘 등 백합과 Allium 속에 속하는 농작물에 중요한 해충으로 전 세계적으로 온대지역에 서 경제적 해충으로 취급하고 있다. 본 연구에서는 기존 자료를 바탕으로 월동번데기의 성충으로 우화모델를 작성하 고 포장 실측자료와 비교하여 평가하였다. 월동번데기 발육모형으로 선형과 비선형모형을 작성하고 발육기간 분포 모형과 결합하여 예찰모형을 작성하였다. 비선형발육모형 작성시 3-매개변수 락틴모형 적용뿐만 아니라 4-매개변 수 모형의 마지막 변수 값을 선형모형의 절편값으로 대체하여 저온에서 선형성이 강화도록 변형시켰다. 성충우화 50% 예측에서 일일평균온도를 이용하는 경우 적산온도 모형을 비롯하여 발육률 적산모형(선형식 및 비선형식) 모두 실측치와 큰 차이가 있었다. 시간별온도를 입력값으로 한 경우 3-매개변수 모형을 제외한 사인곡선 적산온도 모형, 선형 발육률 적산모형, 4-매개변수 비선형 발육률 적산모형의 평균편차는 3일과 차이가 없었다. 최종적으로 선형모형 및 4-매개변수 비선형모형을 바탕으로 시간별온도자료를 이용한 발육률 적산모형은 선발하였다. 그 결과 선형 발육률 적산모형이 두 포장적합 집단(1984, 1987)에서 실측일과 편차가 3일과 차이가 없었다. 비선형 발육률 적산모형은 1984년 적합은 0.8일 편차로 정확하였으나 1987년 집단에서 평균편차가 6.5일로 다소 증가하였다.
        3.
        2024.04 구독 인증기관·개인회원 무료
        본 연구는 검거세미밤나방(Agrotis ipsilon) 성페로몬 트랩에 혼재하여 유살되는 은무늬밤나방아과 형태적 분류와 동정법 수립을 위해, 날개 무늬의 형태계측학 분석을 실시하였다. 은무늬밤나방아과 개체는 2023년 11월 부터 12월까지 제주도 애월읍 일대에서 채집되었으며, 콩 해충으로 알려진 콩은무늬밤나방(Ctenoplusia agnata) 을 비롯하여, 다양한 농작물을 가해하는 것으로 알려진 붉은금무늬밤나방(Chrysodeixis eriosoma)의 수컷 성충이 포획되었다. 앞날개의 형태 및 무늬를 가지고 현장에서 쉽게 동정할 수 있는 형태적 특징을 도출하기 위하여, 각 성충 개체의 앞날개를 잘라 현미경 카메라로 촬영하고, 앞날개의 내횡선, 아외연선, 반점 크기 등 15개의 형질 을 측정하였다. 또한 각 형질 간의 상관관계를 분석하였으며 빈도분포를 통하여 두 종간 분리되는 형질을 파악하 였다. 최종적으로 다변량 분석법을 적용하여 두 집단이 어떻게 군집을 이루는지 분석하고, 날개형태만으로 붉은 금무늬밤나방과 콩은무늬밤나방을 구분할 수 있는 방안을 제시하였다.
        4.
        2023.11 구독 인증기관·개인회원 무료
        Radioactive iodine-129, a byproduct of nuclear fission in nuclear power plants, presents significant environmental and health risks due to its high solubility in water and volatility. Iodine-129, with its half-life of 1.57×1017 years, necessitates safe management and disposal. Therefore, safely capturing and managing I-129 during spent nuclear fuel reprocessing is of paramount importance. To address these challenges, various glass waste forms containing silver iodide have been developed, such as borosilicate, silver phosphate, silver vanadate, and silver tellurite glasses. These glasses effectively immobilize iodine, but the high cost of silver raises affordability concerns. This study introduces CuI·Cu2O·TeO2 glass waste forms for iodine immobilization, a novel approach. The cost-effectiveness of copper, in contrast to silver, makes it an attractive alternative. The CuI·Cu2O·TeO2 glass waste forms were synthesized with varying CuI content (x) in (1-x)(0.3Cu2O·0.7TeO2) glass matrices. Xray diffraction (XRD) confirmed amorphous structures, and X-ray fluorescence (XRF) quantified composition. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy provided insights into structural properties. Durability assessments using a 7-day product consistency test (PCT-A) and inductively coupled plasma-mass spectrometry (ICP-MS) revealed compliance with U.S. glass regulations, making CuI·Cu2O·TeO2 glasses a promising choice for iodine immobilization in radioactive waste.
        5.
        2023.11 구독 인증기관·개인회원 무료
        Deep disposal facility for High-Level radioactive Waste (HLW) uses a multi-barrier system to prevent the leakage of radionuclide. As a part of the engineered barrier, bentonite is primarily considered as the main buffering material. This is due to the adsorption and swelling properties of the bentonite, which are expected to effectively impede leakage of the radionuclide. In many cases, adsorption is generally regarded as occurring only within the buffer zone. However, several research has been conducted to explore the possibility of bentonite intrusion into the Excavation- Damaged Zone (EDZ) generated during excavation processes, because of the swelling properties of the bentonite. Generally, for host rock near the deep disposal facility such as granite, groundwater flows through the fracture network. Therefore, analysis of the characteristics of the fracture network is essential for predicting the behavior of radionuclide in groundwater. Accordingly, the bentonite intrusion into the fracture network is critical for safety assessment of the deep disposal facility. To analyze this, hydro-geochemical model was established utilizing COMSOL Multiphysics and PHREEQC, observing changes of the behavior of U (VI) along fracture network due to the swelling of bentonite. Modeling was conducted with progressively changing intrusion depth of the bentonite. According to the results, the behavior of U (VI) exhibited significant changes depending on the connectivity of the fractures. Based on the distribution characteristics of the fracture network, heterogeneous groundwater flow was observed. U (VI) was transported through the preferential pathway, which indicates high connectivity, due to the rapid groundwater flow. Notably, when changing the intrusion depth of bentonite, significant differences in behavior of U (VI) were observed in the 0-20 cm case. In contrast, as the intrusion depth increased, it was observed that differences became less evident. These results indicate that changes in the properties of fracture network in EDZ due to the swelling of bentonite significantly influence the behavior of U (VI).
        6.
        2023.11 구독 인증기관·개인회원 무료
        The effect of various physicochemical processes, such as seawater intrusion, on the performance of the engineered barrier should be closely analyzed to precisely assess the safety of high-level radioactive waste repository. In order to evaluate the impact of such processes on the performance of the engineered barrier, a thermal-hydrological-chemical model was developed by using COMSOL Multiphysics and PHREEQC. The coupling of two software was achieved through the application of a sequential non-iterative approach. Model verification was executed through a comparative analysis between the outcomes derived from the developed model and those obtained in prior investigations. Two data were in a good agreement, demonstrating the model is capable of simulating aqueous speciation, adsorption, precipitation, and dissolution. Using the developed model, the geochemical evolution of bentonite buffer under a general condition was simulated as a base case. The model domain consists of 0.5 m of bentonite and 49.5 m of granite. The uraninite (UO2) was assigned at the canister-bentonite interface as the potential source of uranium. Assuming the lifetime of canister as 1,000 years, the porewater mixing without uranium leakage was simulated for 1,000 years. After then, the uranium leakage through the dissolution of uraninite was initiated and simulated for additional 1,000 years. In the base case model, where the porewater mixing between the bentonite and granite was the only considered process, the gypsum tended to dissolve throughout the bentonite, while it precipitated in the vicinity of bentonite-granite boundary. However, the precipitation and dissolution of gypsum only showed a limited effect on the performance of the bentonite. Due to the low solubility of uraninite in the reduced environment, only infinitesimal amounts of uranium dissolved and transported through the bentonite. Additional cases considering various environmental processes, such as seawater or cement porewater intrusion, will be further investigated.
        7.
        2023.11 구독 인증기관·개인회원 무료
        In Korea, most temporary storage facilities for spent nuclear fuel are nearing saturation. As an alternative to this, the 2nd basic plan for high-level radioactive waste management specified the operation plan of dry interim storage facility. Meanwhile, the NSSC No. 2021-19 stipulates that it is necessary to evaluate the possibility and potential effect of accident before operating interim storage facility. Therefore, this study analyzed the categories of accident scenarios that may occur in dry storage facility as part of prior research on this. We investigated the case of categorization of dry storage facility accident scenarios of IAEA, NRC, KAREI, and KINS. The IAEA presented accident scenarios that could occur in on-site dry storage facility operated with silo and cask method. NRC has classified accident scenarios in dry storage facility and estimated the probability of accidents for each. KAERI and KINS selected major accident scenarios and analyzed the processes for each, in preparation for the introduction of dry storage facility in Korea in the future. Overall, a total of 10 accident scenarios were considered, and the scenarios considered by each institution were different. Among 10 scenarios, cask drop and aircraft collision were included in the categorization of most institutions. The results of this study can be used as basic data for cataloging accidents subject to safety evaluation when introducing dry interim storage facility in Korea in the future.
        8.
        2023.10 구독 인증기관·개인회원 무료
        지난 2022년 제주도 애월읍 일대에서 콩 해충으로 알려진 콩은무늬밤나방(Ctenoplusia agnata) 성충이 검거세 미밤나방(Agrotis ipsilon)의 성페로몬 트랩에 대량으로 포획되었다. 검거세미밤나방 트랩은 목적 해충에 대한 포획 효율을 조사하기 위해 세 구성 성분, (Z)-7-dodecenyl acetate, (Z)-9-tetradecenyl acetate를 3:1 비율로 고정하고 (Z)-11-hexadecenyl acetate를 0, 1, 6, 10, 15로 각각 비율을 달리한 미끼를 사용하였다. 각 조성별 콩은무늬밤나방 성충 포획수를 비교한 결과, (Z)-11-hexadecenyl acetate가 첨가되지 않은 트랩에서 주당 평균 약 17.96마리로, 가장 많은 수의 개체가 포획된 것으로 확인되었다. 반면, (Z)-11-hexadecenyl acetate가 가장 많이 함유된 트랩에서 주당 평균 약 2.5마리로 가장 적은 개체가 포획된 것으로 파악되었다. 이에 (Z)-11-hexadecenyl acetate의 비율이 증가할 수록, 포획되는 콩은무늬밤나방의 개체 수가 감소되는 것을 확인할 수 있었다. 검거세미밤나방 미끼의 주성분인 Z)-7-dodecenyl acetate는 기존의 콩은무늬밤나방 유인 성분 중 하나이기도 하여 해당 성분의 구성비가 유인에 영향을 미쳤다는 것을 예측할 수 있다. 추후에 해당 트랩들과 시판 중인 콩은무늬밤나방 성페로몬 트랩을 설치하 여 포획 양상을 비교할 필요성이 요구된다.
        9.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was aimed to isolate bacterial inoculants producing chitinase and evaluate their application effects on corn silage. Four corn silages were collected from four beef cattle farms to serve as the sources of bacterial inoculants. All isolates were tested against Fusarium graminearum head blight fungus MHGNU F132 to confirm their antifungal effects. The enzyme activities (carboxylesterase and chitinase) were also measured to isolate the bacterial inoculant. Based on the activities of anti-head blight fungus, carboxylesterase, and chitinase, L. buchneri L11-1 and L. paracasei L9-3 were subjected to silage production. Corn forage (cv. Gwangpyeongok) was ensiled into a 10 L mini silo (5 kg) in quadruplication for 90 days. A 2 × 2 factorial design consists of F. graminearum contamination at 1.0104 cfu/g (UCT (no contamination) vs. CT (contamination)) and inoculant application at 2.1 × 105 cfu/g (CON (no inoculant) vs. INO (inoculant)) used in this study. After 90 days of ensiling, the contents of CP, NDF, and ADF increased (p<0.05) by F. graminearum contamination, while IVDMD, acetate, and aerobic stability decreased (p<0.05). Meanwhile, aerobic stability decreased (p<0.05) by inoculant application. There were interaction effects (p<0.05) on IVNDFD, NH3-N, LAB, and yeast, which were highest in UCT-INO, UCT-CON, CT-INO, and CT-CON & INO, respectively. In conclusion, this study found that mold contamination could negatively impact silage quality, but isolated inoculants had limited effects on IVNDFD and yeast.
        4,000원
        10.
        2023.05 구독 인증기관·개인회원 무료
        Many countries have used nuclear power to generate electricity. Uranium-235, which is used as fuel in nuclear power plants, produces many fission products. Among them, iodine-129 is problematic due to its long half-life (1.57×107 years) and high diffusivity in the environment. If it is released into the environment without any treatment, it could have a major impact on humans and ecosystems. Therefore, it must be treated into a stable form through capture and solidification. Iodine can be captured in the form of AgI through silver-loaded zeolite filters in off-gas treatment processes. However, AgI could be decomposed in the reducing atmosphere of groundwater, so it must be converted into a stable form. In this study, Al2O3, Bi2O3, PbO, V2O5, MoO3, or WO3 were added to the iodine solidification matrix, AgI-Ag2O-TeO2 glass. The glass precursors were mixed to the appropriate composition and placed in an alumina crucible. After heat treatment at 800°C for 1 hour, the melt was quenched in a carbon crucible. The leaching behavior and thermal properties of the glass samples were evaluated. The PCT-A test for leaching evaluation showed that the normalized releases of all elements were below 2 g/m2, which satisfied the U.S. glass wasteform leaching regulations. Diffrential scanning calorimetry (DSC) was performed to evaluate the thermal properties of all glass samples. The addition of MoO3 or WO3 to the AgI-Ag2O-TeO2 glass increased the glass transition temperature (Tg) and crystallization temperature (Tc) while maintaining the glass stability. The similar relative electro-static filed values of MoO3, and WO3 which are approxibately three times that of the glass network former TeO2, could provide sufficient force to the TeO2 interacting with the non-bridging oxygen forming Te-O-M (M=V, Mo, W) links. The high electrostatic forces of Mo and W increased the glass network cohension and prevented the crystallization of the glass.
        11.
        2023.05 구독 인증기관·개인회원 무료
        In Korea, the construction of dry storage facilities for spent nuclear fuel is being promoted through the 2nd basic plan for high-level radioactive waste management. When operating dry storage facilities, exposure dose assessment for workers should be performed, and for this, exposure scenarios based on work procedures should be derived prior. However, the dry storage method has not yet been sufficiently established in Korea, so the work procedure has not been established. Therefore, research is needed to apply it domestically based on the analysis of spent nuclear fuel management methods in major overseas leading countries. In this study, the procedure for receiving and storing spent nuclear fuel in a concrete overpack-based storage facility was analyzed. Among the various spent nuclear fuel management systems, the metal overpack-based HI-STAR 100 system and the concrete overpackbased HI-STORM 100 system are quite common methods in the United States. Therefore, in this study, work procedures were analyzed based on each final safety analysis report. First, the HI-STAR 100 overpack enters the facility and is placed in the transfer area. Remove the impact limiter of the overpack and install the alignment device on the top of the overpack. Place the HI-TRAC, an on-site transfer device, on top of the alignment unit and remove the lids of the two devices to insert the canister into the HI-TRAC. When the canister transfer is complete, reseat the lid to seal it, and disconnect the HI-TRAC from the HI-STAR 100. Raise the canister-loaded HI-TRAC over the alignment device on the top of the HI-STORM 100 overpack and remove the lids of the two devices that are in contact. Insert the canister into the HI-STORM 100 and reseat the lid. The HI-STORM 100 loaded with spent nuclear fuel is transferred to the designated storage area. In this study, the procedure for receiving and storing spent nuclear fuel in a concrete overpack-based storage facility was analyzed. The main procedure was the transfer of canisters between overpacks, and it was confirmed that HI-TRAC was used in the work procedure. The results of this study can be used as basic data for evaluating the exposure dose of operating workers for the construction of dry storage facilities in Korea.
        16.
        2022.10 구독 인증기관·개인회원 무료
        Hydrogen isotopes (H, D, T) separation technologies have received great interest for treatments of tritiated liquid waste produced in Fukushima. In addition, the separated deuterium and tritium can be utilized in various industries such as semiconductors and nuclear fusion as expensive and rare resources. However, separating hydrogen isotopes in gas and liquid forms still requires energyintensive processes. To improve efficiency and performance of hydrogen isotope separation, we are developing water electrolysis, cryosorption, distillation, isotope exchange, and hydrophobic catalyst technologies. Furthermore, an analytical method is studied to evaluate the separation of hydrogen isotopes. This presentation introduces the current status of hydrogen isotope research in this research group.
        17.
        2022.10 구독 인증기관·개인회원 무료
        Uranium-235, used in nuclear power generation, produces a lot of radioactive waste. Among radioactive waste nuclides, I-129 is problematic due to its long half-life (1.57×107 y) with high mobility in the environment. It should be captured and immobilized into a geological disposal environment through a stable waste form. In this study, various additives including Al, Bi, Pb, V, Mo and W were added to silver tellurite glass to prepare a matrix for immobilizing iodine, and its thermal and leaching properties were evaluated. To prepare glass, the glass precursor mixture was placed in alumina crucibles and heated at 800°C for 1 h. Except for aluminum, there was no significant loss of constituent elements. The loading of iodine in the matrix was approximately 11-15% by weigh, excluding oxygen. The normalized releases of all the elements obtained by PCT-A were below the order of 10-1 g/m2, which satisfies US regulation (2 g/m2). Differential scanning calorimetry was performed to evaluate the thermal properties of the glass samples. The glass transition temperature (Tg) increased by adding such as V2O5, MoO3, or WO3. The similar relative electrostatic field values of V2O5, MoO3, and WO3 could provide sufficient electro static field to the TeO2 interacting with the non-bridging oxygen forming Te-O-M (M = V, Mo, W) links. The addition of MoO3 or WO3 in the silver tellurite glass system increased glass transition temperature (Tg) and crystallization temperature (Tc) while maintaining the glass stability.
        18.
        2022.10 구독 인증기관·개인회원 무료
        The analysis of uranium migration is crucial for the accurate safety assessment of high-level radioactive waste (HLW) repository. Previous studies showed that the migration of the uranium can be affected by various physical and chemical processes, such as groundwater flow, heat transfer, sorption/ desorption and, precipitation/dissolution. Therefore, a coupled Thermal-Hydrological-Chemical (THC) model is required to accurately simulate the uranium migration near the HLW repository. In this study, COMSOL-PHREEQC coupled model was used to simulate the uranium migration. In the model, groundwater flow, heat transfer, and non-reactive solute transport were calculated by COMSOL, and geo-chemical reaction was calculated by PHREEQC. Sorption was primarily considered as geo-chemical reaction in the model, using the concept of two-site protolysis nonelctrostatic surface complexation and cation exchange (2 SP NE SC/CE). A modified operator splitting method was used to couple the results of COMSOL and PHREEQC. Three benchmarks were done to assess the accuracy of the model: 1) 1D transport and cation exchange model, 2) cesium transport in the column experiment done by Steefel et al. (2002), and 3) the batch sorption experiment done by Fernandes et al. (2012), and Bradbury and Baeyens (2009). Three benchmark results showed reliable matching with results from the previous studies. After the validation, uranium 1D transport simulation on arbitrary porewater condition was conducted. From the results, the evolution of the uranium front with sequentially saturating sites was observed. Due to the limitation of operator splitting method, time step effect was observed, which caused the uranium to sorbed at further sites then it should. For further study, 3 main tasks were proposed. First, precipitation/ dissolution will be added to the reaction part. Second, multiphase flow will be considered instead of single phase Darcy flow. Last, the effect of redox potential will be considered.
        19.
        2022.10 구독 인증기관·개인회원 무료
        Montmorillonite plays a key role in engineered barrier systems in the high-level radioactive waste repository because of its large sorption capacity and high swelling pressure. However, the sorption capacity of montmorillonite can be largely varied dependent on the surrounding environments. This study conducted the batch simulation for U(VI) sorption on Na-montmorillonite by utilizing the cation exchange and surface complexation coupled (2SP-NE-SC/CE) model and evaluated the effects of physicochemical properties (i.e., pH, temperature, competing cations, U(VI) concentration, and carbonate species) on U(VI) sorption. The simulation demonstrated that the U(VI) sorption was affected by physicochemical properties: the pH and temperature relate to aqueous U(VI) speciation, the competing cations relate to the cation exchange process and selectivity, the U(VI) concentration relates to saturation at sorption sites. For example, the Kd (L kg−1) of Na-montmorillonite represented the largest values of 2.7×105 L kg−1 at neutral pH condition and had significantly decreased at acidic pH<3, showing non-linear and diverse U(VI) sorption at the ranged pH from 2 to 11. Additionally, the U(VI) sorption on montmorillonite significantly decreased in presence of carbonate species. The U(VI) sorption for long-term in actual porewater chemistry and temperature of high-level radioactive waste repository represented that the sorption capacity of Na-montmorillonite was affected by various external properties such as concentration of competing cation, temperature, pH, and carbonate species. These results indicate that geochemical sorption capacity of bentonite should be evaluated by considering both geological and aquifer environments in the high-level radioactive waste repository.
        1 2 3 4 5