검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 99

        7.
        2022.10 구독 인증기관·개인회원 무료
        In the design of a spent-fuel (SF) storage, the consideration of burnup credit brings the benefits in safety and economic views. According to it, various SF burnup measurement systems have been developed to estimate high fidelity burnup credit, such as FORK and SMOPY. Recently, there are a few attempts to localize the SF burnup measurement system in South Korea. For the localization of SF burnup measurement systems, it is very important to build the isotope inventory data base (DB) of various kinds of SFs. In this study, we performed DeCART2D/MASTER core follow calculations and McCARD single fuel assembly (FA) burnup analyses for Hanbit unit 3 and confirmed the characteristic of the isotope inventory over burnup. Firstly, the core follow calculations for Cycles 1~7 were performed using DeCART2D/MASTER code system. The core follow calculation is very realistic and practical because it considers the design conditions from its nuclear design report (NDR). Secondly, the Monte Carlo burnup analyses for single FAs were conducted by the McCARD Monte Carlo (MC) transport code. The McCARD code can utilize continuous energy cross section library and treat complex geometric information for particle transport simulation. Accordingly, the McCARD code can provide accurate solutions for burnup analyses without approximations, but it needs huge computing resources and time burden to perform whole-core follow calculations. Therefore, we will confirm the effectiveness of the single McCARD FA burnup analyses by comparing the DeCART2D/MASTER core follow results with the McCARD solution. From the results, the use of single FA burnup analyses for the establishment of the DBs will be justified. Various FAs, that have different 235U enrichments and loading pattern of fuel rods and burnable absorbers, were considered for the burnup analyses. In addition, the results of the sensitivity analyses for power density, initial enrichment, and cooling time will be presented.
        8.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, numerical analysis is conducted to investigate the flow characteristics of a turning type flood gate fishway with various design factors. The shapes of the fishway are circular and rectangular type. Baffles are installed to reduce the velocity in the fishway, and the gap and rotational arrangement of the baffles are set as design factors. To reduce the maximum velocity, a cavity-shaped break region is installed to examine the flow characteristics according to the presence of the break region. As a result, in the condition where the shape of the fishway is rectangular, the outlet average flow velocity is larger than that in the circular condition. The highest flow velocity occurs when the baffle is rotated in 90-degree arrangement. As the baffle gap increases, the average velocity increases. The cavity-shaped break region creates a recirculation zone in the fishway, and as a result, shows a decrease in the maximum velocity of up to 5.8%.
        4,000원
        9.
        2022.05 구독 인증기관·개인회원 무료
        In this study, an aerosol process was introduced to produce CaCO3. The possibility of producing CaCO3 by the aerosol process was evaluated. The characteristics of CaCO3 prepared by the aerosol process were also evaluated. In the CaCO3 prepared in this study, as the heat treatment proceeded, the calcite phase disappeared. The portlandite phase and the lime phase were formed by the heat treatment. Even if the CO2 component is removed from the calcite phase, there is a possibility that the converted CO2 component could be adsorbed into the Ca component to form a calcite phase again. Therefore, in order to remove the calcite phase, carbon components should be removed first. The lime phase was formed when CO2 was removed from the calcite phase, while the portlandite phase was formed by the introducing of H2O to the lime phase. Therefore, the order in which each phase formed could be in the order of calcite, lime, and portlandite. The reason for the simultaneous presence of the portlandite phase and the lime phase is that the hydroxyl group (OH−) introduced by H2O was not removed completely due to low temperature and/or insufficient heating time. When the sufficient temperature (900°C) and heating time (60 min) were applied, the hydroxyl group (OH−) was removed to transform into lime phase. Since the precursor contained the hydrogen component, it could be possible that the moisture (H2O) and/or the hydroxyl group (OH−) were introduced during the heat treatment process.
        10.
        2022.05 구독 인증기관·개인회원 무료
        Uranium-235, used for nuclear power generation, has brought radioactive waste. It could be released into the environment during reprocessing or recycling of the spent nuclear fuel. Among the radioactive waste nuclides, I-129 occurs problems due to its long half-life (1.57×107 y) with high mobility in the environment. Therefore, it should be captured and immobilized into a geological disposal system through a stable waste form. One of the methods to capture iodine in the off-gas treatment process is to use silver loaded zeolite filter. It converts radioactive iodine into AgI, one of the most stable iodine forms in the solid state. However, it is difficult to directly dispose of AgI itself in an underground repository because of its aqueous dissolution under reducing condition with Fe2+. It must be immobilized in the matrix materials to prevent release of iodine as a result of chemical reaction. Among the matrix glasses, silver tellurite glass has been proposed. In this study, additives including Al, Bi, Pb, V, Mo, and W were added into the silver tellurite glass. The thermal properties of each matrix for radioactive iodine immobilization were evaluated. The glasses were prepared by the melt-quenching method at 800°C for 1 h. Differential scanning calorimetry (DSC) was performed to evaluate the thermal properties of the glass samples. From the study, the glass transition temperature (Tg) was increased by adding additives such as V2O5, MoO3, or WO3 in the silver tellurite glass. The relative electro-static field (REF) values of V2O5, MoO3, and WO3 are about three times higher than that of the glass network former, TeO2. It could provide sufficient electro-static field (EF) to the TeO2 interacting with the non-bridging oxygen forming Te-O-M (M = V, Mo, W) links. Therefore, the addition of V2O5, MoO3, or WO3 reinforced the glass network cohesion to increase the Tg of the glass. The addition of MoO3or WO3 in the silver tellurite glass increased Tg and crystallization temperature (Tc) with remaining the glass stability.
        11.
        2022.05 구독 인증기관·개인회원 무료
        During the treatment of spent nuclear fuel, radioactive iodine is generated in a liquefied or gaseous form in a specific process. In the case of iodine 129, it is a long-lived nuclide with a very long halflife and has high groundwater mobility under repository conditions. Despite showing a low radioactivity value, research on the management of radioactive iodine from a long-term perspective is continuously being performed. Although research has been conducted using borosilicate glass as a medium for solidifying iodine, compatibility of I in borosilicate glass is very small and the volatility is high in the solidification process. So it is not suitable as a solidified substance of iodine. Therefore, studies on other solidification media to replace them are continuously being conducted. Our research team tried to develop a new medium that can contain iodine in a solidified body stably through a simple heat treatment process and can improve problems such as volatility and waste loading. Iodine is captured as AgI in the Ag ion-exchanged zeolite. So, TeO2, Ag2O, and Bi2O3 having a high AgI loading rate were used as main components. It was named TAB after taking the first letter of each element. In previous studies, the physical properties, structure, and chemical stability of TAB materials were confirmed. PCT (Product Consistent test) was performed to confirm chemical stability. It is mainly used to compare the chemical stability of glass materials with other glass materials, but there are limitations in evaluating the long-term chemical stability of materials. In this experiment, we tried to evaluate the long-term stability of TAB and compare it with borosilicate, which is conventionally used to treat radioactive waste. In addition, we tried to understand the leaching behavior inside the TAB medium. For this purpose, ASTM C1308 test was performed for 365 days, and distilled water and KURT groundwater were used as leachates to examine the effect of ions in the groundwater on the solidified body. To analyze the leaching behavior, ICP-MS and ICP-OES analyses were performed, and the cross-section of the sample after leaching was observed through SEM.
        12.
        2022.05 구독 인증기관·개인회원 무료
        To reduce the environmental burden caused by the disposal of spent nuclear fuel and maximize the utilization of the repository facility, waste burden minimization technology is currently being developed at the Korea Atomic Energy Research Institute (KEARI). The technology includes a nuclide management process that can maximize disposal efficiency by selectively separating and collecting major nuclides in spent nuclear fuel. In addition, for efficient storage facility utilization, the short-term decay heat generated by spent nuclear fuel must be removed from the waste stream. To minimize the short-term thermal load on the repository facility, it is necessary to separate heat generating nuclides such as Cs-137 and Sr-90 from the spent fuel. In particular, Sr-90 must be separated because it generates high heat during the decay process. KAERI has developed a technology for separating Sr nuclides from Group II nuclides separated through the nuclide management process. In this study, we prepared Sr ceramic waste form, SrTiO3, by using the solid-state reaction method for long-term storage for the decay of separated Sr nuclides and evaluated the physicochemical properties of the waste form. Also, the radiological and thermal characteristics of the Sr waste form were evaluated by predicting the composition of Sr nuclides separated through the nuclide management process, and the estimation of centerline temperature was carried out using the experimental thermal data and steady state conduction equation in a long and solid cylinder type waste form. These results provided fundamental data for long-term storage and management of Sr waste.
        19.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene fiber is considered as a potential material for wearable applications owing to its lightness, flexibility, and high electrical conductivity. After the graphene oxide (GO) solution in the liquid crystal state is assembled into GO fiber through wet spinning, the reduced graphene oxide (rGO) fiber is obtained through a reduction process. In order to further improve the electrical conductivity, herein, we report N, P, and S doped rGO fibers through a facile vacuum diffusion process. The precursors of heteroatoms such as melamine, red phosphorus, and sulfur powders were used through a vacuum diffusion process. The resulting N, P, and S doped rGO fibers with atomic% of 6.52, 4.43 and 2.06% achieved the higher electrical conductivities compared to that of rGO fiber while preserving the fibrious morphology. In particular, N doped rGO fiber achieved the highest conductivity of 1.11 × 104 S m−1, which is 2.44 times greater than that of pristine rGO fiber. The heteroatom doping of rGO fiber through a vacuum diffusion process is facile to improve the electrical conductivity while maintaining the original structure.
        4,000원
        1 2 3 4 5