The milling characteristics of rice using different milling methods (dry and wet) were investigated. Generally, average particle sizes of dry-milling flours were bigger than those of wet-milling flours due to low moisture content. Three theoretical models for milling, such as the Rittinger, Kick, and Bond model, were applied to characterize the milling process of rice. The wet-milling method showed higher value milling constants including Bond’s work index. Baeksulgi was used to study the effect of the milling method and particle size on rice flour’s physicochemical property (water content, color value, and texture). Moisture content and hardness of Baeksulgi were smaller as the particle size became smaller. L value of Baeksulgi was greater as the particle size became smaller. The energy requirement for the milling of grains to obtain a suitable size of particles was estimated by the grinding models. The results of our study might provide a systematic way to estimate the energy requirement to obtain a suitable particle size by milling
Probiotic strain is known to regulate the immune system by colonizing in the intestine and interact with intestinal cell receptors of lymphoid tissue. In this study, safety of Streptococcus thermophilus KCTC14471BP and silk fibroin coating effects was evaluated with respect to mucin binding abilities and immune system modulation. S. thermophilus KCTC14471BP was coated with silk fibroin by adding 1% water-soluble calcium and 0.1% silk fibroin. S. thermophilus KCTC14471BP showed the high activities of leucine arylamidase and β-galactosidase. Regarding the antibiotic resistance tests, S. thermophilus KCTC14471BP was susceptible to ampicillin, vancomycin, gentamicin, kanamycin, streptomycin, erythromycin, clindamycin, tetracycline, and chloramphenicol. S. thermophilus KCTC14471BP coated with silk fibroin showed the improved mucin binding ability from 16.1% to 71.3% and was confirmed to have no cytotoxicity against RAW 264.7 macrophage. S. thermophilus KCTC14471BP coated with silk fibroin showed dose-dependently significant increases in pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. These results suggested that S. thermophilus KCTC14471BP can be expected as a promising probiotic bacteria for applications to food industries such as fermentation or functional foods.