Background: Falls are a common and serious problem in the elderly population. Muscle strength and balance are important factors in the prevention of falls. The Y-balance test (YBT) is used to assess dynamic postural control and shows excellent test-retest reliability. However, no studies have examined the relationship between lower-limb strength and YBT scores in elderly women.
Objects: This study aimed to examine the relationship between lower-limb strength and YBT scores in elderly women.
Methods: Thirty community-dwelling elderly women participated in the study. Lower-limb strength including hip flexor, hip extensor, hip abductor (HAB), hip adductor (HAD), knee flexor, knee extensor, ankle dorsiflexor, and ankle plantar flexor (PF) muscles was examined using a smart KEMA strength sensor (KOREATECH Inc.), and the YBT was used to assess dynamic balance. Relationship between lower-limb strength and YBT was demonstrated using a Pearson’s correlation coefficient.
Results: HAB strength (r = 0.388, p < 0.05), HAD strength (r = 0.362, p < 0.05), and ankle PF strength (r = 0.391, p < 0.05) positively correlated with the YBT-anterior direction distance. Ankle PF strength was positively correlated with the YBT-posteromedial direction distance (r = 0.396, p < 0.05) and composite score (r = 0.376, p < 0.05).
Conclusion: The results of this study suggest that HAB, HAD, and ankle PF strengths should be considered for dynamic postural control in elderly women.
Background: The lateral step down (LSD) is a form of stair negotiation used by the elderly because it requires less movement of the lower extremity. Although it is necessary to study the amount of pelvic drop and the strength of a hip abductor during LSD for intervention, limited studies have investigated the relationship between the amount of pelvic drop and strength of a hip abductor during LSD in elderly people.
Objects: This study aimed to determine the relationship between the amount of pelvic drop on an unsupported leg and the strength of the hip abductor during LSD in the elderly.
Methods: Thirty elderly people (male: 17, female: 13) were recruited. Subjects performed the LSD task, and the evaluator measured and the amount of pelvic drop on an unsupported side. Also, the isometric strength of the hip abductor was measured in a supine position.
Results: We found significant relationships between the strength of the hip abductor and the amount of pelvic drop (r = –0.386). The average hip abductor strength normalized by body weight was 1.06 N/kg (max: 1.99, min: 0.52) and the average contralateral pelvic drop (CPD) angle was 4.16° (max: 15.3, min: 0).
Conclusion: Our results indicated that the strength of the hip abductor had a moderate correlation with the CPD during a LSD in the elderly. Hip abductor weakness could translate into altered movement of the pelvis.
Background: Pronated foot posture (PFP) contributes to excessive dynamic knee valgus (DKV). Although foot orthoses such as medial arch support (MAS) are widely and easily used in clinical practice and sports, few studies have investigated the effect of MAS on the improvement of DKV during stair descent in individuals with a PFP. Moreover, no studies reported the degree of improvement in DKV according to the severity of PFP when MAS was applied.
Objects: This study aimed to examine the immediate effect of MAS on DKV during stair descent and determine the correlation between navicular drop distance and changes in DKV when MAS is applied.
Methods: Twenty individuals with a PFP (15 males and five females) participated in this study. The navicular drop test was used to measure PFP severity. The frontal plane projection angle (FPPA) was calculated under two conditions, with and without MAS application, using 2-dimensional video analysis.
Results: During stair descent, the FPPA with MAS (173.1° ± 4.7°) was significantly greater than that without MAS (164.8° ± 5.8°) (p < 0.05). There was also a significant correlation between the navicular drop distance and improvement in the FPPA when MAS was applied (r = 0.453, p = 0.045).
Conclusion: MAS application can affect the decrease in DKV during stair descent. In addition, MAS application should be considered to improve the knee alignment for individuals with greater navicular drop distance.
Background: The serratus anterior (SA) muscle prevents scapular winging (SW) by stabilizing the medial border of the scapula during arm movement. The upper trapezius (UT) and lower trapezius (LT) muscles may compensate for the weak SA muscle in individuals with SW during shoulder flexion. However, there is no study to examine whether compensation by UT and LT occurs in individuals with SW.
Objects: This study compared the muscle activities of UT, LT, and SA as well as the SA/UT activity ratio between individuals with and without SW during shoulder flexion with load.
Methods: This study recruited 27 participants with SW (n = 14) and without SW (n = 13). Electromyography data of the SA, UT, and LT muscles and SA/UT activity ratio were recorded and analyzed during shoulder flexion with 25% load of the maximal shoulder flexion force. Independent t-test was used to compare the UT, LT, and SA muscle activities and SA/UT ratio between the groups with and without SW; statistical significance was set at α of 0.05.
Results: SA activity was significantly lesser in the group with SW than in the group without SW. However, there were no significant differences in the UT and LT activities and SA/UT activity ratio between the two groups.
Conclusion: The SA activity was lesser in the group with SW than in the group without SW with 25% load of the maximal shoulder flexion force, but there was no compensatory muscle activity of the UT and LT observed. Therefore, further studies are warranted to clarify the compensatory strategy of scapular stabilization in individuals with SW during shoulder flexion under other heavy load conditions.
Background: Forward head posture (FHP) is common postural malalignment. FHP is described relatively extension to upper cervical and lower cervical is relatively flexion. Although several researchers mentioned the lower cervical flexion posture in FHP, most of the studies related to FHP is focused on the deep cervical flexor function.
Objects: The purposes of present study is to compare the cervical strength (upper cervical extension [UCE], lower cervical extension [LCE], upper cervical flexion [UCF], lower cervical flexion [LCF]) between individuals with and without FHP.
Methods: Fifty-one participants are recruited. Participants who have the craniovertebral angle (CVA) less than 48 degree were classified to the FHP group (n = 24) and the others were included in without FHP group (n = 27). The cervical strength (UCE, LCE, UCF, LCF) were measured using Smart KEMA strength sensor and the strength data was normalized by body weight. All strength measurement conducted at head and neck neutral position in sitting. Independent t-test was used to compare the cervical strength between individuals with and without FHP.
Results: The mean value of CVA was greater in without FHP group than with FHP group (p < 0.000). The strength value of UCF (p < 0.002) and LCE (p < 0.001) was significant less in FHP group than without FHP group. But no significant differences were seen in the LCF and UCE strength between two groups.
Conclusion: UCF and LCE weakness in FHP group should be considered to evaluate and manage the individuals with FHP.
Background: The hip muscle plays various roles. Several types of functional performance tests are used for the assessment of patients with various lower extremity injuries. Hip muscle functions are important to test the performance of maintaining the spine, pelvic, and leg during bridging exercise. We designed a novel functional performance test tool, which we named close kinetic chain dynamic lower extremity stability (CKCLE) test to assess hip muscle functions.
Objects: The purpose of this study was to determine the relationship between CKCLE test and hip extensor, external rotator, and abductor strengths.
Methods: Twenty-two subjects were recruited in the present study (13 males and 9 females). The hip extensor, external rotator, and abductor muscle strengths were measured using a Smart KEMA strength sensor. When the examiner said “Go”, the subject performed the CKCLE test by moving one leg from the floor and touching the opposite knee and then return to the floor while maintaining the bridging position. The subjects attempted as many “touches” as possible in the allotted time (20 seconds) during the maximal tests. The correlation between the hip muscle (extensor, external rotator, and abductor) strength of the supporting leg and the number of CKCLE tests performed in 20 seconds was determined using the Pearson correlation.
Results: Hip extensor (r = 0.626, p < 0.05), hip external rotator (r = 0.616, p < 0.05), and hip abductor muscle strengths (r = 0.475, p < 0.05) positively correlated with the number of CKCLE tests performed.
Conclusion: We designed a CKCLE test and found that performance in the test correlated with hip extensor, external rotator, and abductor muscle strengths. The result suggests that the CKCLE test can be applied as a performance test to assess the functions of the hip extensor, external rotator, and hip abductor muscles.
Background: The wall squat exercise has been recommended for strengthening of the lower extremity muscles with maintaining lumbar lordosis. Although squat has been studied to be related to lower extremity extensor strength, the relationship between wall squat and lower extremity extensor strength unclear. Because squat and wall squat are biomechanically different, study on the relationship is needed.
Objects: The purpose of this study was to determine the lower extremity extensor strength associated with wall squat performance.
Methods: 74 healthy volunteers were recruited to participate in this study. The volunteers were measured hip and knee extensors strength and then performed wall squat exercise for maximum count.
Results: We found significant relationships between wall squat performance and hip extensor strength normalized by body weight, knee extensor strength normalized by body weight and the composite value. In a regression analysis, hip extensor strength normalized by body weight explained 29% of the variation in wall squat performance in males and 35% in females.
Conclusion: These results demonstrate that hip extensor strength normalized by body weight is critical to wall squat performance in both sexes.
Background: The craniocervical flexion (CCF) exercise is one of the effective exercise in correcting forward head posture (FHP). However, some people with FHP achieve CCF with compensatory movements, for example, low cervical flexion using superficial neck flexors such as the sternocleidomastoid (SCM) muscle. No study has yet investigated whether a dualpressure biofeedback unit (D-PBU) method to prevent low cervical flexion would be helpful in performing pure CCF movement. Objects: The purpose of this study was to compare the effects of the CCF using D-PBU method and the traditional CCF method on the cross-sectional area (CSA) of the longus colli muscle (LCM) and the activity of SCM muscle in subjects with FHP. Methods: Twentyfour FHP subjects (male: 16, female: 8) were recruited for this study. All subjects performed CCF using two different methods: The traditional CCF method and the CCF using D-PBU method. The CSA of the LCM was measured via ultrasound, and surface electromyography was used to measure SCM muscle activity. Results: The change in CSA of the LCM was significantly larger during the CCF using D-PBU method (1.28±.09) compared with the traditional CCF method (1.19±.08) (p<.05). The SCM muscle activity using the CCF using D-PBU method (2.01±1.97 %MVIC) was significantly lower than when using the traditional CCF method (2.79±2.32 %MVIC) (p<.05). Conclusion: The CCF using D-PBU method can be recommended for increasing LCM activation and decreasing SCM muscle activity during CCF movement in subjects with FHP.
Background: Shoulder external rotation exercises are commonly used to improve the stabilizing ability of the infraspinatus. Although the side-lying wiper exercise (SWE) is the most effective shoulder external rotation exercise to maximize infraspinatus activity, the effect of adduction force on the infraspinatus and posterior deltoid has not been demonstrated. Objects: This study was conducted to investigate whether horizontal adduction force increases infraspinatus activity and decreases posterior deltoid activity. Methods: Twenty-eight healthy subjects (male: 21, female: 7; age=23.5±1.8 years; height=170.1±7.4 ㎝; weight=69.4±9.6 ㎏) were recruited. Subjects were asked to perform the SWE under two conditions: (1) general SWE and (2) SWE with adduction force using pressure biofeedback. Surface electromyography (EMG) signals of the infraspinatus and posterior deltoid were recorded during SWE. Paired t-tests were used to compare the EMG activity of the infraspinatus and posterior deltoid between the two conditions. Results: Posterior deltoid muscle activity was significantly decreased following SWE with adduction force (7.53±4.52%) relative to general SWE (11.68±8.42%) (p<.05). However, there was no significant difference in the infraspinatus muscle activity between the SWE with adduction force (28.33±12.16%) and the general SWE (26.54±13.69%) (p>.05). Conclusion: Horizontal adduction force while performing SWE is effective at decreasing posterior deltoid activity.
Background: The serratus anterior (SA) muscle is one of the important muscles in the upward rotation of the scapula when the arm is raised. Insufficient muscle activity of the SA can cause deformation of the shoulder rhythm resulting in shoulder pathology. Objects: This study intends to compare SA and upper trapezius (UT) activity during the conventional wall-slide and push-up plus exercises for SA muscle strengthening and the scapular upward rotation (SUR) exercise. Methods: A total of 30 subjects participated in this study, and we measured the muscle activity of the SA and UT muscles during the wall-slide, push-up plus and SUR exercises. The one-way repeated ANOVA was used to compare SA and UT muscle activities during the 3 exercises. Results: During the SUR exercise, SA muscle activity was 79.88% maximum voluntary isometric contraction (MVIC), which was significantly higher than its activity during the other 2 exercises. The UT muscle activity was 47.53 %MVIC during the SUR exercise, indicating a significantly higher UT muscle activity than during the other 2 exercises. Conclusion: These findings suggest that the SUR exercise can maximize SA muscle activity to strengthen the SA while keeping UT muscle activity at an appropriate level.
Background: The wall squat is considered an effective exercise because it can reduce the knee load and prevent excessive lumbar movement. However, the relationship between wall squat performance and strength of knee extensors and hip extensors remained unclear. Objects: The purpose of this study was to compare the strengths of the knee extensors and hip extensors between groups with low and high wall squat performance. Method: Nineteen males (low performance group: 9 subjects, high performance group: 10 subjects) participated in this study and performed wall squats. The subjects who were performing less than 30% of the average wall squat count were classified into the low wall squat performance group (less than or equal to 4 times) and the subjects who performed more than 30% of the average wall squat count were classified into the high wall squat performance group (greater than or equal to 8 times). Knee extensor and hip extensor strength were measured with a strength measurement system. An independent t-test was used to compare the strengths of the knee extensors and hip extensors between the groups with low and high wall squat performance. Results: The ratios of knee extensor and hip extensor strength to bodyweight were greater in the high wall squat performance group than in the low wall squat performance group (knee extensors: p<.001; hip extensors: p=.03). In the high- and low-performance groups, the ratios of knee extensor strength to bodyweight were 42.74±5.72 and 30.76±8.54, respectively, and the ratios of hip extensor strength to bodyweight were 31.95±10.61 and 20.66±11.25, respectively. Conclusion: Our findings suggest that knee extensor and hip extensor strength are needed for high wall squat performance. Thus, exercise to increase the knee and hip extensors strength can be recommended to improve squat performance.
Background: The functioning of the serratus anterior (SA) muscle is essential to normal scapulohumeral rhythm during forward flexion (FF) of the shoulder. Also, SA weakness and overuse of the upper trapezius (UT) is observed in patients with shoulder dysfunction and trapezius myalgia. We designed a combination exercise involving FF and scapular protraction with resistance (CFFSP) to activate the SA muscle and to deactivate the UT muscle.
Objects: The purpose of this study was to determine whether or not CFFSP would be more effective in activating the SA muscle than FF alone and FF with scapular protraction (FFP).
Methods: Nineteen subjects (12 men and 7 women) participated in this study and performed FF, FFP, and CFFSP at 120°. Surface electromyography was applied to the SA, UT, and pectoralis major (PM) muscles, as was one-way analysis of variance (ANOVA) with repeated measures. Statistical significance was set at .05. Bonferroni adjustment was used to counteract the problem of multiple comparisons, with a statistical level of significance of .017 (.05/3).
Results: A statistically significant difference was found in relation to the three positions for the SA muscle (p<.001) and the SA/UT ratio (p=.005) using ANOVA. Significantly different results, depending on the position, were also demonstrated using the Bonferroni post-hoc test for the SA muscle (FF=28.27±16.20, FFP=45.66±15.81, and CFFSP=62.4±27.21) and for the SA/UT ratio (FF=3.04±2.14, FFP=3.61±2.38, and CFFSP=5.95±3.01). Significant differences between the three positions was not found regarding the average amplitude of SA/PM muscle ratio (SA/PM: p=.060).
Conclusion: We recommend the use of CFFSP to strengthen the SA muscle at 120°.
Background: Prone hip extension (PHE) can be performed to measure the lumbopelvic motor patterns and motions. Imbalances in lumbopelvic muscle activity and muscle weakness can result in instability including pain in lumbopelvic region. The posterior oblique sling (POS) muscles contribute to dynamic lumbopelvic stability. In addition, POS are anatomically aligned with the trapezius muscle group according to shoulder positions. Objects: This study compared the electromyography (EMG) activity of POS and pelvic compensations during PHE with and without pre-activation of lower trapezius muscle (lowT). Methods: Sixteen healthy males were recruited. PHE was performed in randomized order: PHE with and without lowT pre-activation. Surface EMG signals were recorded for biceps femoris (BF), gluteus maximus (GM) (ipsilateral), lumbar multifidus (MF) (bilateral), and the lowT (contralateral). An electromagnetic tracking motion analysis was used to measure the angle of pelvic rotation and anterior tilting. Results: The ipsilateral GM and bilateral MF EMG amplitudes were greater during PHE with lowT pre-activation compared to PHE without lowT pre-activation (p<.05). The BF amplitude during PHE without lowT pre-activation was significantly greater than that during PHE with lowT pre-activation (p<.05). The angles of pelvic rotation and anterior tilting during PHE with lowT pre-activation were significantly smaller compared to PHE without lowT pre-activation (p<.05). Conclusion: PHE with lowT pre-activation, which is aligned with the POS, showed more increased MF and GM muscular activity with smaller lumbopelvic compensations in rotation and anterior tilting compared to PHE without lowT pre-activation.
The aims of the current study were to assess reliability of range of motion (ROM) measurement of glenohumeral internal rotation (GIR) with a pressure biofeedback stabilization (PBS) method and to compare the reliability between manual stabilization (MS) and the PBS method. In measurement of pure glenohumeral joint motion, scapular stabilization is necessary. The MS method in GIR ROM measurement was used to restrict scapular motion by pressing the palm of the tester’s hand over the subject’s clavicle, coracoid process, and humeral head. The PBS method was devised to maintain consistent pressure for scapular stabilization during GIR ROM measurement by using a pressure biofeedback unit. GIR ROM was measured by 2 different stabilization methods in 32 subjects with GIR deficit using a smartphone clinometer application. Repeated measurements were performed in two test sessions by two testers to confirm inter- and intra-rater reliability. After tester A performed measurements in test session 1, tester B’s measurements were conducted one hour later on the same day to assess the inter-rater reliability and then tester A performed again measurements in test session 2 for confirming the intra-rater reliability. Intra-class correlation coefficient (ICC) (2,1) was applied to assess the inter-rater reliability and ICC (3,1) was applied to determine the intra-rater reliability of the two methods. In the PBS method, the intra-rater reliability was excellent (ICC=.91) and the inter-rater reliability was good (ICC=.84). The inter-rater and intra-rater reliability of the PBS method was higher than in the MS method. The PBS method could regulate manual scapular stabilization pressure in inter- and intra-rater measuring GIR ROM. Results of the current study recommend that the PBS method can provide reliable measurement data on GIR ROM.
This study compared the effects of the initial head position (i.e., a HHP versus a relaxed head position) of subjects with and without a FHP on the thickness of the deep and superficial neck flexor muscles during CCF. The study recruited 6 subjects with a FHP and 10 subjects without a FHP. The subjects performed CCF in two different head positions: a HHP, with the head aligned so that the forehead and chin formed a horizontal line, and a relaxed head position (RHP), with the head aligned in a self-selected comfortable position. During the CCF exercise, the thickness of the longus colli (LCo) and the thickness of the sternocleidomastoid (SCM) were recorded using ultrasonography. The thickness of each muscle was measured by Image J software. The statistical analysis was performed with a two-way mixed-model analysis of variance. The thickness of the SCM differed significantly (p<.05) between the subjects with and without FHP. According to a post hoc independent t-test, the change in thickness of the SCM increased significantly during CCF in the subjects with FHP while adopting a HHP compared to that in the subjects without FHP. The change in thickness of the SCM was not significantly different between the two positions in subjects without FHP, and there was no significant change in thickness of the LCo muscle during the CCF exercise according to the initial position in both subjects with and without FHP. The results suggest that CCF should be performed in RHP to minimize contraction of the SCM in subjects with a FHP.