We investigated the spatial and temporal variation in characteristics and pollution assessment of sediments in the watersheds of Andong-Dam and Imha-Dam, in Korea. Surface sediments were collected from six sites once a year for three years (2015-2017), and analyzed for organic matter (water content, IL, COD, TOC, TN, and TP), grain size, and concentration of trace metals (Al, Li, Zn, Cr, Pb, Cu, Ni, and As). Organic matter generally tended to increase, and was higher in the Andong watershed compare to Imha watershed. Surface sediments were mainly composed of silt. Coarse sediments were mainly distributed at the site adjacent to Andong-Dam, and showed fining after coarsening. Fine sediment were mainly distributed at the site adjacent to Imha-Dam, and were gradually coarsening. Concentration of trace metals generally tended to increase, and was higher for sites in watershed of Andong watershed (PLI > 1) than for sites in Imha watershed (PLI < 1). Trace metals in the study area were considered to be affected by fine sediment (silt), and contamination of trace metals was somewhat affected by Pb, and greatly affected by Zn and As.
This study reviewed the applicability of the existing flood discharge calculation method on Jeju Island Han Stream and compared this method with observation results by improving the mediating variables for the Han Stream. The results were as follows. First, when the rain-discharge status of the Han Stream was analyzed using the flood discharge calculation method of the existing design (2012), the result was smaller than the observed flood discharge and the flood hydrograph differed. The result of the flood discharge calculation corrected for the curve number based on the terrain gradient showed an improvement of 1.47 - 6.47% from the existing flood discharge, and flood discharge was improved by 4.39 - 16.67% after applying the new reached time. In addition, the sub-basin was set separately to calculate the flood discharge, which yielded an improvement of 9.92 - 32.96% from the existing method. In particular, the steepness and rainfall-discharge characteristics of Han Stream were considered in the reaching time, and the sub-basin was separated to calculate the flood discharge, which resulted in an error rate of –8.77 to 8.71%, showing a large improvement of 7.31 - 28.79% from the existing method. The flood hydrograph also showed a similar tendency.
The Fuji variety of apple, introduced in Japan, has excellent storage quality and good taste, such that it is the most commonly cultivated apple variety in Gunwi County, North Gyeongsang Province, Korean Peninsula. Accurate prediction of harvest maturity allows farmers to more efficiently manage their farm in important aspects such as working time, fruit storage, market shipment, and labor distribution. Temperature is one of the most important factors that determine plant growth, development, and yield. This paper reports on the beta distribution (function) model that can be used to simulate the the phenological response of plants to temperature. The beta function, commonly used as a skewed probability density in statistics, was introduced to estimate apple harvest maturity as a function of temperature in this study. The model parameters were daily maximum temperature, daily optimum temperature, and maximum growth rate. They were estimated from the input data of daily maximum and minimum temperature and apple harvest maturity. The difference in observed and predicted maturity day from 2009 to 2012, with optimal parameters, was from two days earlier to one day later.
In this study, the Chiu-2D velocity-flow rate distribution based on theoretical background of the entropy probability method was applied to actual ADCP measurement data of Gangjung Stream in Jeju from July 2011 to June 2015 to predict the parameter that take part in velocity distribution of the stream. In addition, surface velocity measured by SIV (Surface Image Velocimeter) was applied to the predicted parameter to calculate discharge. Calculated discharge was compared with observed discharge of ADCP observed during the same time to analyze propriety and applicability of depth of water velocity average conversion factor. To check applicability of the predicted stream parameter, surface velocity and discharge were calculated using SIV and compared with velocity and flow based on ADCP. Discharge calculated by applying velocity factor of SIV to the Chiu-2D velocity-flow rate distribution and discharge based on depth of water velocity average conversion factor of 0.85 were 0.7171 m3/sec and 0.5758 m3/sec, respectively. Their error rates compared to average ADCP discharge of 0.6664 m3/sec were respectively 7.63% and 13.64%. Discharge based on the Chiu-2D velocity-flow distribution showed lower error rate compared to discharge based on depth of water velocity average conversion factor of 0.85.
This research aims at comparing the accuracy of flood discharge estimation. For this, we focused on the Oedo watershed of Jeju Island and compared flood discharge by analyzing the values as follows: (1) the concentration of the lumped model (HEC-HMS) and distributed model (Vflo), and (2) the in-situ data using Fixed Surface Image Velocimetry (FSIV). The flood discharge estimation from the HEC-HMS model is slightly larger than the Vflo model results. This result shows that the estimations of the HEC-HMS are larger than the flood discharge data by 4.43 to 36.24% and that of the Vflo are larger by 8.49 to 11%. In terms of the error analysis at the peak discharge occurrence time of each mapping, HEC-HMS is one hour later than the measured data, but Vflo is almost the same as the measured data.
In this study, groundwater flow was analyzed targeting Dae-jeong watershed, which exhibited the largest variations of groundwater levels at the identical elevation points among the 16 watersheds of Jeju Island. The issues of the methods applied in practice were identified and improvement plans were suggested. This groundwater-flow estimates derived by applying hydraulic conductivity values onto zones of equal topographic ground level were found to be quite different from actual measured groundwater flow. Conversely, groundwater-flow estimates that utilized hydraulic conductivity values applied onto groundwater-level equipotential lines indicated relatively lesser divergences from actual measured groundwater flow. The reliabilities of the two approaches were assessed for 60 randomly selected points on DEM (digital elevation model) maps, The method using hydraulic conductivity values applied onto groundwater-level contours turned out to be the more reliable approach for the Dae-jeong watershed in Jeju Island.
In this study, according to the reference setting based on the runoff video of 9:00 where the highest water level of 3.94 m has been recorded during the runoff of Cheon-mi Stream in Jeju Island by the attack of Typhoon no. 16 Sanba on September 17th, 2012, the error rate of long-distance and short-distance velocimetry and real-distance change rate by input error have been calculated and the input range value of reference point by stream has been suggested. In the reference setting process, if a long-distance reference point input error occurs, the real-distance change rate of 0.35 m in the x-axis direction and 1.35 m in y-axis direction is incurred by the subtle input error of 2~11 pixels, and if a short-distance reference point input error occurs, the real-distance change rate of 0.02 m in the x-axis direction and 0.81 m in y-axis direction is incurred by the subtle input error of 1~11 pixels. According to the long-distance reference point setting variable, the velocity error rate showed the range of fluctuation of at least 14.36% to at most 76.06%, and when calculating flux, it showed a great range of fluctuation of at least 20.48% to at most 78.81%.
Fuji apple variety introduced in Japan has excellent storage quality and good taste so it is most commonly cultivated in the Korean Peninsula.
Accurate prediction of harvest maturity allows farmers to more efficiently manage their farm, such as working time, fruit storage, market shipment and labor distribution so it is very important. This study was carried out to predict the harvest maturity of ‘Fuji’ apple using DTS (Days Transformed to Standard temperature) model based on the Arrhenius law in the Gunwi province of the South Korea. Input data are daily average temperature and apple harvest maturity. Predicted the harvest maturity of Fuji apple after estimating the optimal parameters by using the Nelder-Mead method. The differences of observed and predicted harvest maturity day are approximately 1 to 4 days and the RMSE is 2.9.
This study is daytime and nighttime runoff image data caused by heavy rain on May 27, 2013 at Oedo Water Treatment Plant of Oedo-Stream, Jeju to compute runoff by applying Surface image velocimeter (SIV) and analyzing correlation according to current. At the same time, current was comparatively analyzed using ADCP observation data and fixed electromagnetic surface current meter (Kalesto) observed at the runoff site.
As a result of comparison on resolutions of daytime and nighttime runoff images collected, correlation coefficient corresponding to the range of 0.6~0.7 was 6.8% higher for nighttime runoff image compared to daytime runoff image. On the contrary, correlation coefficient corresponding to the range of 0.9~1.0 was 17% lower. This result implies that nighttime runoff image has lower image quality than daytime runoff image. In the process of computing current using SIV, a rational filtering process for correlation coefficient is needed according to images obtained.
This study analyzed the velocimetry of runoff and measured the flood discharge by applying the SIV (Surface Image Velocimetrer) to the daytime and nighttime flow image data with special reference to Seong-eup Bridge at Cheonmi stream of Jeju during the flow by the severe rainstorm on May 27, 2013.
A 1000W lighting apparatus with more than 150 lux was installed in order to collect proper nighttime flow image applied to the SIV. Its value was compared and analyzed with the velocity value of the fixed electromagnetic wave surface velocimetry (Kalesto) at the same point to check the accuracy and applicability of the measured velocity of flow.
As a result, determination coefficient R2 values were 0.891 and 0.848 respectively in line with the velocity distribution of the daytime and nighttime image and the flow volume measured with Kalesto was approximately 18.2% larger than the value measured with the SIV.
This study Analyzed four of seven runoffs which had happened in 2012 in comparison with the runoffs shown in Kalesto data, using the fixed surface image velocimetry (FSIV) installed at Oedo stream, Jeju Island. As a result of identifying a runoff curve graph, it was analyzed that the flood runoffs calculated with two observation devices were almost equivalent. As the differences in peak flows were 10 m3/s, 0.7 m3/s and 3 m3/s, the very similar result values were calculated. Even though there were errors in RMSE(Root Mean Square Error) made by two observation devices according to the degree of the peak flow, the values of R² by flood event were 0.89, 0.87, 0.86 and 0.82, showing the result values almost close to 1. Therefore, there was a very high correlation in flood runoffs calculated with two observation devices. This research method was considered to be a very suitable method to measure unexpected flood runoffs which could happen in the island area such as Jeju island during bad weather.
The present study aims to apply a surface image velocimetry(SIV) system to video images captured with CCTV and estimate the flood discharge. The CCTV was installed at the Hancheon Bridge of the Han Cheon in Jeju Island for disaster surveillance, and seven flood events occurred in 2012 were used. During the image analyses, input parameters, interrogation areas and searching areas were determined with proper calibration procedures. To check for accuracy and applicability of SIV, the velocities and flood discharges estimated by SIV were compared with the measured ones by an electromagnetic surface velocimeter, Kalisto. The comparison results showed fairly good agreements. The RMSE(Root Mean Square Error) values between two instruments showed a range of 4.13 and 14.2, and the determination coefficients reached 0.75 through 0.85. It means that the SIV could be used as a good alternative method for other traditional velocity measuring instruments in measuring flood discharges.
Surface Image Velocimetry(SIV) is an instrument to measure water surface velocity by using image processing techniques. Since SIV is a non-contact type measurement method, it is very effective and useful to measure water surface velocity for steep mountainous streams, such as streams in Jeju island. In the present study, a surface imaging velocimetry system was used to calculate the flow rate for flood event due to a typhoon. At the same time, two types of electromagnetic surface velocimetries (electromagnetic surface current meter and Kalesto) were used to observe flow velocities and compare the accuracies of each instrument. The comparison showed that for velocity distributions root mean square error(RMSE) was 0.33 and R-squared was 0.72. For discharge measurements, root mean square error(RMSE) reached 6.04 and R-squared did 0.92. It means that surface image velocimetry could be used as an alternative method for electromagnetic surface velocimetries in measuring flood discharge.
Aerosol characterization study for individual particle in Busan metropolitan industrial complex was carried out from December 2010 to August 2011. SEM(scanning electron microscope)-EDX(energy dispersive x-ray) analysis was used for the analysis of 600 single particles during the sampling periods to identify non-metallic aerosol particle sources. Average PM10 concentration was 65.5 ㎍/㎥ in summer, 104.1 ㎍/㎥ in winter during the sample periods. And Average PM2.5 concentration was 24.5 ㎍/㎥ in summer, 64.5 ㎍/㎥ in winter individually. Particle density, enrichment factor, correlation analysis, principle component analysis were performed based on chemical composition data. Particle density distribution was measured to 2∼4 g/㎤, and the density of PM2.5 was measured above 3 g/㎤. In general, the elements Si, Ca, Fe and Al concentrations were higher in all samples of individual particles. The non-ferrous elements Zn, Br, Pb, Cu concentrations were higher in summer than in winter. The concentrations were not changed with the seasons because of non-ferrous industry emission pattern.
Due to the difficulties for measuring flood discharge in the dangerous field conditions, conventional instruments with relatively low accuracy such as float still have been widely utilized for the field survey. It is also limited to use simple stage-discharge relationship for assessment of the flood discharge, since the stage-discharge relationship during the flood becomes complicated loop shape. In recent years, various non-intrusive velocity measurement techniques such as electromagnetic wave or surface images have been developed, which is quite adequate for the flood discharge measurements. However, these new non-intrusive techniques have little tested in the flood condition, though they promised efficiency and accuracy. Throughout the field observations, we evaluated the validity of these techniques by comparing discharge and velocity measurements acquired concurrently during the flood in a mountain stream. As a result, the flood discharge measurements between electromagnetic wave and surface image processing techniques showed high positive relationship, but velocities did not matched very well particularly for the high current speed more 3 m/s. Therefore, it should be noted here that special cares are required when the velocity measurements by those two different techniques are used, for instance, for the validation of the numerical models. In addition, authors assured that, for the more accurate flood discharge measurements, velocity observation as well as stage height is strongly necessary owing that the unsteady flow occurs during the flood.
The objectives of this study, an analysis of the variation for leaf and fruit characteristics among the selected ten populations of Sorbus commixta Hedl. could be used for the conservation of gene resources and could provide information to superior trees selection. The results obtained from this study can be summarized as follows; Approximately, the Mt. Sungin population at Ulleung island showed larger values in overall characteristics and populations. On the other hand, Mt. Halla population at Jeju island showed the smaller values of the overall characteristics and populations. ANOV A tests showed that there were statistically significant differences in all leaf characteristics among the populations as well as individual trees within populations. But, for fruit characteristics, differences were statistically significant only among the populations. Cluster analysis using single linkage method based on leaf and fruit characteristics showed that ten selected populations of S. commixta in Korea could be clustered into three groups. Group I is Mt. Sungin at Ulleung island, Group II is Mt. Halla at Jeju island, and Group III comprises Osan, Mt. Kaji, Mt. Duckyoo, Mt. Balwang, Mt. Sobaek, Mt. O-dae, Mt. Jiri, and Mt. Taebaek. The selection level based on major agronomic traits, which are the Number of Fruit per Fruiting Lateral(NFL) over 50, and Fruit Length(FL) and Width(FW) over 10 mm, and Weight of 100 Fruit(WFI00) over 66 g, was applied on 100 sample trees, and five trees were selected. The selection effects from selected trees in NFL, FL, FW, and WF100 were evaluated as 132%, 151 %, 142%, and 264% compared to the mean of those 100 sample trees, respectively. Especially, Ulleung 2 showed excellent values that NFL and WFI00 were 95, and 69 g, respectively, suggesting a promising new cultivar for larger fruit and high productivity.