검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 359

        2.
        2024.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Kori Unit 1, the first commercial nuclear power plant (NPP) in Korea, was permanently shut down in 2017 and was scheduled for decommissioning. Various programs must be planned early in the decommissioning process to safely decommission NPPs. Radiological characterization is a key program in decommissioning and should be a high priority. Radiological characterization involves determining the decommissioning technology to be applied to a nuclear facility by identifying the radiation sources and radioactive contaminants present within the facility and assessing the extent and nature of the radioactive contaminants to be removed from the facility. This study introduces the regulatory requirements, procedures, and implementation methods for radiological characterization and proposes a methodology to link the results of radiological characterizations for each stage. To link radiological characteristics, this study proposes to conduct radiological characterization in the decommissioning phase to verify the results of radiological characterization in the transitional phase of decommissioning NPPs. This enables significantly reducing the scope and content of radiological characterization that must be performed in the decommissioning phase and maintaining the connection with the previous phase.
        4,600원
        3.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Yeongsan River is a prominent inland waterway, alongside the Han River, Nakdong River, and Geum River in South Korea. Numerous bacterial strains were isolated from the Yeongsan River basin for a comprehensive investigation into indigenous prokaryotic species conducted between 2020 and 2023. These bacterial strains were identified using 16S rRNA gene sequencing, wherein 45 bacterial strains shared >98.7% sequence similarities with bacterial species not recorded in Korea thus far. Therefore, this study aimed to catalogue aforementioned unrecorded species and characterize them contingent upon their Gram nature, colony and cell morphologies, biochemical properties, and phylogenetic positions. These bacterial species were determined to be phylogenetically diverse. They were categorized into nine classes, 18 orders, and 25 families. These previously unrecorded species were classified into the following genera and classes: Chitinophaga (class Chitinophagia); Flavobacterium (class Flavobacteriia); Rhodopseudomonas, Gemmobacter, Paracoccus, Azospirillum, Sphingomonas, Novosphingobium, Sphingorhabdus, and Erythrobacter (class Alphaproteobacteria); Bordetella, Pararobbsia, Polynucleobacter, Rhodoferax, Aquabacterium, Malikia, Comamonas, Ideonella, Paucibacter, Undibacterium, Cupriavidus, and Thauera (class Betaproteobacteria); Pectobacterium, Arenimonas, Lysobacter, and Luteimonas (class Gammaproteobacteria); Luteolibacter (class Verrucomicrobiia); Mycolicibacterium, Angustibacter, Ornithinibacter, Janibacter, Schumannella, Aurantimicrobium, Luedemannella, Nocardioides, and Propionicimonas (class Actinomycetes); Geothrix (class Holophagae); and Lactococcus (class Bacilli).
        5,100원
        4.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국립원예특작과학원에서는 밝은 화색과 안정적인 화형의 생 육이 우수한 빨간색 스탠다드 장미 품종을 육성하기 위해 진한 적색 스탠다드 장미 품종 ‘엔드리스러브(Endless Love)’를 모 본으로, 꽃잎수가 많고 안정적으로 가시가 적은 밝은 노란색 ‘페니레인(Penny Lane)’ 품종을 부본으로 인공교배하였다. 37 개의 교배실생을 양성해 1, 2, 3차에 걸친 특성검정 및 현장실증 을 통해 꽃이 크고 화형이 안정적이며, 재배안정성 및 생산성, 절화특성이 우수한 ‘원교 D1-390’을 최종 선발하였다. 2023년 ‘루비레드(Ruby Red)’로 명명하여 국립종자원에 품종보호출원·등록되었다. ‘루비레드’ 품종은 밝은 적색(R53C)을 가졌으 며, 꽃잎수가 32.8매, 화폭과 화고는 각각 10.9, 5.9cm로 대조 품종보다 크다. 절화장은 평균 71.7cm, 절화수명은 약 16.7일, 수량은 연간 168대/m2로 대조품종인 ‘레드스퀘어(Red Square)’ 대비 절화장이 길고 절화수명도 2배 이상 길며, 수확량도 1.4배 우수하다. 2023년 국내 육성 장미 품종 서울식물원 관람객 대상 공동평가회에서 스탠다드 장미 중 우수한 평가를 받았으며, 현 장 실증 결과 농가별로 균일하고 우수한 수량과 절화품질을 보 였다. 절화용 장미 ‘루비레드’ 품종은 밝은 적색과 우수한 화형 을 가지는 품종으로 해외 대체 품종으로 국내에서 많이 재배될 것으로 기대된다.
        4,000원
        5.
        2024.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Vitrification, one of the most promising solidification processes for various materials, has been applied to radioactive waste to improve its disposal stability and reduce its volume. Because the thermal decomposition of dry active waste (DAW) significantly reduces its volume, the volume reduction factor of DAW vitrification is high. The KHNP developed the optimal glass composition for the vitrification of DAW. Since vitrification offers a high-volume reduction ratio, it is expected that disposal costs could be greatly reduced by the use of such technology. The DG-2 glass composition was developed to vitrify DAW. During the maintenance of nuclear power plants, metals containing paper, clothes, and wood are generated. ZrO2 and HfO2 are generally considered to be network-formers in borosilicate-based glasses. In this study, a feasibility study of vitrification for DAW that contains metal particulates is conducted to understand the applicability of this process under various conditions. The physicochemical properties are characterized to assess the applicability of candidate glass compositions.
        4,200원
        14.
        2024.04 구독 인증기관·개인회원 무료
        Climate change has led to increased insect pests and pest distribution changes. Traditionally, chemical control using synthetic pesticides has been the main method for pest management, but the emergence of pesticide-resistant pests has become a problem. There is a need to develop new pest control agents to overcome these issues. Entomopathogenic fungi used in pest management have minimal environmental side effects and possess a mechanism of action distinct from that of synthetic pesticides. However, there is a need for the development of technologies to maximize the insecticidal effects of fungi against pests, and expressing and releasing dsRNA within the fungi can preemptively knock out the activation of the insect’s defense system, thereby enhancing the insecticidal effect. Controlling insect defense genes and using entomopathogenic fungi as bio-carriers forms a new pest management strategy. This approach, described as a “microbial insecticide agents development strategy of cassette concept, ” can versatilely modify genes and microbes. It is expected to overcome the limitations of synthetic pesticides.
        15.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Silage inoculants, crucial in modern silage production, comprise beneficial microorganisms, primarily lactic acid bacteria (LAB), strategically applied to forage material during ensiling. This study aimed to compare the effectiveness of various inoculants produced by different companies. Five treatments were evaluated, including a control group: T1 (Lactobacillus plantarum), T2 (Lactobacillus plantarum + Pediococcus pentosaceus), T3 (Lactobacillus plantarum + Pediococcus pentosaceus + Lactobacillus buchneri), T4 (Lactobacillus plantarum + Lactobacillus acidophilus + Lactobacillus bulgaricus), and T5 (Lactobacillus plantarum + Pediococcus pentosaceus + Enterococcus faecium). Italian ryegrass was harvested at the heading stage and treated with these silage inoculants. Samples were collected over a 60-day ensiling period. Co-inoculation with L. plantarum and P. pentosaceus (T2) resulted in significantly higher CP compared to the control group co-inoculation exhibited with resulted in Lactobacillus plantarum and Pediococcus pentosaceus in the T2 treatment exhibited higher CP content of 106.35 g/kg dry matter (DM). The T3 treatment, which included heterofermentative bacterial strains such as Lactobacillus buchneri, exhibited an increase in acetic acid concentration (11.15 g/kg DM). In the T4 treatment group, which utilized a mixed culture of Lactobacillus acidophilus and Lactobacillus bulgaricus, the NH3-N/TN content was observed to be the lowest (20.52 g/kg DM). The T5 containing Enterococcus faecium had the highest RFV (123) after 60 days. Expanding upon these findings, the study underscores not only the beneficial effects of particular inoculant treatments on silage quality but also underscores the potential of customized inoculation strategies in maximizing nutrient retention and overall silage preservation.
        4,000원
        16.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Since rice is the main food in Korea, there are no regulations on corn milling yet. Corn is known as one of the world's top three food crops along with wheat and rice, and it is known that 3.5 billion people worldwide use corn for food. In addition, corn mills are not developed or sold in Korea, but the use of corn mills is increasing significantly in many countries in Southeast Asia. In the Philippines, as Korea's rice mill import increases, Korea's KAMICO (Korea Agricultural Machinery Industry Cooperative) and domestic company A agreed to develop a corn mill jointly with PHilMech, an organization affiliated with the Philippine Ministry of Agriculture. However, research on corn milling was very insignificant, so the development was carried out based on the technology of Korea's rice mill. Rice milling is performed by peeling off the skin of rice and producing brown or white rice, so it is carried out by removing the skin and cutting the skin. On the other hand, in the corn mill, the skin of the corn is peeled, pulverized and selected to produce main products suitable for edible use. Therefore, in order to develop a corn mill, processes such as peeling, transfer, grinding, sorting, and by-product separation are required, and suitable parts must be developed. In addition, the performance must be gradually improved through experiments in which corn is repeatedly milled. The Philippines produces 7.98 million tons/year of corn, which is about 100 times that of Korea, and is mostly consumed as a staple food. This is about 10% of the total crop production in the Philippines. In addition, the main cultivation complexes of corn are the mountainous regions of Tarlac or Pangasinan, and the produced corn is 72.4% of the so-called yellow corn called Arabel and Sarangani, and the remaining 27.6% are known as white corn. In this study, it was intended to produce grains of 2.5 mm or less suitable for food for yellow corn and to develop a corn mill for 200 kg per hour. Detailed conditions for development are stipulated as more than 55% of the main product recovery rate, more than 31% of the by-product recovery rate, less than 5% of the raw material loss rate, and more than 80% of the embryo dislocation rate. In this study, to achieve this, the overall process of the corn mill was developed, and the optimal conditions for the corn mill were obtained through the development of parts and empirical tests to improve performance. In addition, it was intended to achieve the development goal by evaluating and analyzing the performance of each part so that it did not conflict.
        4,800원
        17.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hypertension is characterized by excessive renin-angiotensin system activity, leading to blood vessel constriction. Several synthetic compounds have been developed to inhibit renin and angiotensin-converting enzyme (ACE). These drugs often have adverse side effects, driving the exploration of plant protein-derived peptides as alternative or supplementary treatments. This study assessed the phenolic compound and amino acid content and the antioxidant and antihypertensive activity of 5 South Korean staple crops. Sorghum had the highest phenolic compound content and exhibited the highest antioxidant activity. Millet grains, particularly finger millet (38.86%), showed higher antihypertensive activity than red beans (14.42%) and sorghum (17.16%). Finger millet was found to contain a large proportion of branched-chain, aromatic, and sulfur-containing amino acids, which are associated with ACE inhibition. In particular, cysteine content was positively correlated with ACE inhibition in the crops tested (r=0.696, p<0.01). This study confirmed that the amino acid composition was more correlated with the antihypertensive activity of grains than the phenolic compound content. Finger millet mainly contained amino acids, which have higher ACE inhibitory activity, resulting in the strongest antihypertensive activity. These findings underscore the antihypertensive potential of select crops as plant-based food ingredients, offering insight into their biological functions.
        4,200원
        18.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigated the effects of exposure frequency, depth of processing, and activity repetition types on vocabulary learning. In total, 78 South Korean fifth-grade students were divided into four conditions. Students in each condition were asked to read a passage with four of the eight target words (exposure: four times) and the other four words (exposure: once) for three days, and to perform the vocabulary activities assigned to each condition. According to the results, exposure frequency and activity repetition type had significant effects on vocabulary learning. Activity repetition type also had a significant interaction effect with exposure frequency and depth of processing. Notably, presenting a word 12 times (4x3) in reading intervals had a more positive impact on vocabulary learning than presenting it three times (1x3), particularly when different vocabulary activities were repeated. Meanwhile, when the same activity was repeated, an activity with a higher depth of processing was more effective for vocabulary learning.
        7,000원
        19.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we examined the antagonistic effects of sprout-borne lactic acid bacteria (LAB) on Salmonella enterica serovar Enteritidis. This antagonism is promoted as a means of controlling contamination during sprout production and provides additional LAB for consumers. We isolated a total of 24 LAB isolates in nine species and five genera from seven popular vegetable sprouts: alfalfa (Medicago sativa), clover (Trifolium pratense), broccoli (Brassica oleracea ssp. italica), vitamin (B. rapa ssp. narinosa), red radish (Raphanus sativus), red kohlrabi (B. oleracea var. gongylodes), and Kimchi cabbage (B. campestris var. pekinensis). Based on 16S rRNA gene sequences, the LAB species were identified as Enterococcus casseliflavus, E. faecium, E. gallinarum, E. mundtii, Lactococcus taiwanensis, Leuconostoc mesenteroides, Pediococcus pentosaceus, and Weissella cibaria, and W. confusa. A total of 16 LAB isolates in seven species including E. faecium, E. gallinarum, E. mundtii, L. taiwanensis, L. mesenteroides, P. pentosaceus, and W. cibaria showed antagonistic activity toward S. enterica. The growth inhibition of sprout LAB on S. enterica was confirmed by co-culture. Unexpectedly, sprout LAB failed to suppress the growth of S. enterica in alfalfa sprouts, whereas all LAB strains stimulate S. enterica growth even if it is not significant in some strains. The findings of this study indicate that S. enterica-antagonistic LAB are detrimental to food hygiene and will contribute to further LAB research and improved vegetable sprout production.
        4,000원
        20.
        2023.11 구독 인증기관·개인회원 무료
        One of the important components of a nuclear fuel cycle facility is a hot cell. Hot cells are engineered robust structures and barriers, which are used to handle radioactive materials and to keep workers, public, and the environment safe from radioactive materials. To provide a confinement function for these hot cells, it is necessary to maintain the soundness of the physical structure, but also to maintain the negative pressure inside the hot cell using the operation of the heating, ventilation, and air conditioning (HVAC) systems. The negative pressure inside the hot cells allows air to enter from outside hot cells and limits the leakage of any contaminant or radioactive material within the hot cell to the outside. Thus, the HVAC system is one of the major components for maintaining this negative pressure in the hot cell. However, as the facility ages, all the components of the hot cell HVAC system are also subject to age-related deterioration, which can cause an unexpected failure of some parts. The abnormal operating condition from the failure results in the increase of facility downtime and the decrease in operating efficiency. Although some major parts are considered and constructed in redundancy and diversity aspects, an unexpected failure and abnormal operating condition could result in reduction of public acceptance and reliability to the facility. With the advent of the 4th Industrial Revolution, prognostics and health management (PHM) technology is advancing at a rapid pace. Korea Hydro & Nuclear Power, Siemens, and other companies have already developed technologies to constantly monitor the integrity of power plants and are applying the technology in the form of digital twins for efficiency and safety of their facility operation. The main point of PHM, based on this study, is to monitor changes and variations of soundness and safety of the operation and equipment to analyze current conditions and to ultimately predict the precursors of unexpected failures in advance. Through PHM, it would be possible to establish a maintenance plan before the failure occurs and to perform predictive maintenance rather than corrective maintenance after failures of any component. Therefore, it is of importance to select appropriate diagnostic techniques to monitor and to diagnose the condition of major components using the constant examination and investigation of the PHM technology. In this study, diagnostic techniques are investigated for monitoring of HVAC and discussed for application of PHM into nuclear fuel cycle facilities with hot cells.
        1 2 3 4 5