검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3,347

        201.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국내외로 첨단 ICT 융합기술이 농업 분야에 적용되기 시작 하면서, 시설원예 설비들이 고도화되고, 스마트팜 구축 기술 및 인력이 축적되기 시작하였다. 그러나 우리나라 농촌의 경 우, 농업생산 연령의 고령화, 국내 농촌 인구의 지속적인 유출, 저출산 등으로 인하여 스마트팜 확대 및 적용에 어려움이 많 은 실정이다. 따라서 공간 및 시간에 구속을 받지 않는 간편한 농업인 교육 프로그램이 필요하며, 최근 부상하고 있는 시뮬 레이션 기술을 활용한다면 농업 교육용 시뮬레이션 툴 개발도 가능할 것으로 판단된다. 온실 환경 제어 모델을 이용한 시뮬 레이션은 다양한 지역과 기상 조건 하에서 대상 온실의 열과 물질에너지의 상호작용을 합리적으로 예측할 수 있게 해준다. 본 연구에서는 온실 환경 제어 모델을 활용하여 외부 기상 데 이터를 통해 온실의 환경 변화를 예측하고 가상의 환경 제어시스템을 통해 환경 제어 시 필요한 에너지값들을 시뮬레이션 할 수 있었다. 이러한 결과를 통해 이용자가 직접 맞춤형 환경 제어를 할 수 있도록 편의성을 고려한 사용자 인터페이스를 구축할 것이며, 실제 파프리카 재배 온실의 제어 요소들을 반 영할 수 있도록 설계될 것이다. 농업용 교육 시뮬레이션 툴을 최근 활발하게 연구가 이루어지고 있는 작물 생육 모델링 기 술 및 전산유체역학 기술과 융합하면 더욱 타당한 결과를 보 일 것이다.
        4,300원
        202.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Ministry of Agriculture, Food and Rural Affairs introduced the Agrifood Voucher in 2020. The Agrifood Voucher is the program that provides vouchers to purchase selected food items with dietary management education. This study aimed to explore value and meaning of dietary management based on the Agrifood Voucher. First, the Supplemental Nutrition Assistance Program of the United States and the Agrifood Voucher of Korea were reviewed. Second, various terms used for describing the purpose of food assistance programs were comparatively reviewed and ‘food and nutrition security’, together with the corresponding Korean term, was proposed to be the most appropriate term for the purpose. Subsequently, the value and meaning of dietary management based on the Agrifood Voucher were presented as enhancing food and nutrition security of the vulnerable. Diverse education programs should be developed and implemented to improve the dietary management capacity of the Agrifood Voucher recipients in order to properly realize the meaning and value of dietary management based on the Agrifood Voucher in the future.
        4,000원
        203.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the maintenance and management of government office building in Dongnaebu, Gyeongsangdo in the mid-19th century. In the late Joseon Dynasty, Dongraebu was an important point of national defense and a place of trade and diplomacy with Japan, so it had many government facilities. There are very few government facilities remaining today, and no structure remains. Therefore, it is possible to grasp information about the government facilities through the old materials. Currently, there are public documents related to the local government offices such as Eupji, Eupsarye, and Junggi. Through comparison between public documents, we will examine the maintenance and management of Dongnaebu government facilities in the mid-19th century. As a result of the research, Dongnaebu government facilities were supervised by department and managed like articles. In addition, the name, size, and changes were all recorded in the management of the goods, and the authority of responsibility was clearly stated. This result is because the remaining material has the purpose of preparation as an accounting book. As a result, it was found that the government facilities in the late Joseon Dynasty were managed by a systematic department with clear authority.
        4,600원
        204.
        2022.10 구독 인증기관·개인회원 무료
        The correlation between accident management plan and radiation emergency plan of Shin-Kori Units 3 and 4 was compared and analyzed from the point of view of the adequacy of facilities, equipments, organization and manpower which are necessary for the related emergency response. It was found the equipment of accident management plan and emergency response facility of radiation emergency plan had different technical contents and scope of application, so there was no risk of mutual conflict and overlapping functions. However, since the accident impact assessment code in accident management plan and computer program of radiation emergency plan were different, it was necessary to ensure the agreement or linkage of the evaluation between them. When a radiation emergency is issued in accident management plan, the composition and mission of the accident response organization were mostly consistent with the contents of the radiation emergency plan, but some corrections and improvement items were identified. Accident management plan specified that the disaster response safety center belonged to the emergency operations facility (EOF), but the radiation emergency plan did not mention it at all. The main tasks of disaster response safety center were the movement, arrangement and connection of mobile emergency response facilities, on-site construction of other emergency response facilities, and on-site road restoration. According to the accident management plan, the movement, arrangement, and connection of mobile facilities (i.e., mobile generators, mobile pumps, multi-purpose communication relay facilities), which were considered very important for the prevention and mitigation of serious accidents, were under the supervision of the disaster response safety center. It was stipulated that the operation was carried out with the cooperation of a regular emergency organization, and that the start, operation and stop of mobile equipments were to be performed under the supervision of the emergency operation team supported by the regular emergency organization. Since this organization structure and assignment of duties could not be confirmed in radiation emergency plan, it was necessary to revise and improve the radiation emergency plan for the successful operation of mobile equipments and to link them with the accident management plan.
        205.
        2022.10 구독 인증기관·개인회원 무료
        The decommissioning of nuclear power plant (NPP) consists of various activities, such system decontamination, take out of activated components, segmentation of the activated components, site remediation, etc. During various activities, the generation of radioactive wastes and radiation exposure to workers is expected. The systematic waste management during the activities is important to implement the decommissioning. The inefficient waste management usually bring significant delay in decommissioning process and results in increase of decommissioning cost. The radiation exposure management is also an important issue. It is generally accepted that the hot spot, generated from operation and decommissioning of NPP, is observed in many places within containment building. Although the health physicists measure the radiation in various points, the unintended hot spots are sometimes generated and observed. The effective radiation exposure management also requires the control of personnel and space during various activities. In this study, the radiation exposure and waste management experiences of Zion NPP is reviewed. The primary nuclides and radiation exposure during various activities are systematically studied to achieve the main objectives of this paper.
        206.
        2022.10 구독 인증기관·개인회원 무료
        The decommissioning project of NPP is a large-scale project, with various risks. Successful implementation of the project requires appropriate identification and management of risks. IAEA considered risk management “To maximize opportunities and to minimize threats by providing a framework to control risk at all levels in the organization”. Framework-based risk management allows project managers to identify key areas in which action should be taken at an appropriate time. Also, it enables effective management of projects by supporting decision-making on sub-uncertainty. Risk could be categorized according to the source of the risk. This is called Risk Breakdown Structure (RBS), and is documented as a risk assumption register through a risk identification process. IAEA considers various factors when defining risks in accordance with ISO 31000:2009. IAEA SRS No.97 presents a recommended risk management methodology for the strategy and execution stage of the decommissioning project of nuclear facilities through the DRiMa project conducted from 2012 to 2015. The risk breakdown structure classified in DRiMa project is as follows: (1) Initial condition of facility, (2) End state of decommissioning project, (3) Management of waste and materials, (4) Organization and human resources, (5) Finance, (6) Interfaces with contractors and suppliers, (7) Strategy and technology, (8) Legal and regulatory framework, (9) Safety, and (10) Interested parties. They have various prompts for each category. Such a strategy for dealing with risks has negative risks (threats) or positive risks (opportunities). The negative risks are as shown in avoid, transfer, mitigate and accept. On the other side, the positive risks are as shown in exploit, share, enhance and accept. During the decommissioning, a contingency infrastructure is needed to decrease the probability of unexpected events caused by negative risks. The contingency infrastructure of decommissioning project includes organization, funding, planning, legislation & regulations, information, training, stakeholder involvement, and modifications to existing programs. Since all nuclear facilities have different environmental, physical or contamination conditions, risks and treatment strategies should also be applied differently. This risk management process is expected to proceed at the stage of establishing and implementing a detailed plan for the decommissioning project of each individual plant.
        207.
        2022.10 구독 인증기관·개인회원 무료
        Minimizing of radiation exposure for the operating and decommissioning personnel is a key indicator for safe operation of the NPP. This is reflected in the application of the ALARA (As Low As Reasonable Achievable) principle. The main objectives of radiation management during full system decontamination for NPP decommissioning are to reduce the exposure dose, prevent contamination of the body and reduce solid radioactive waste. In order to reduce exposure of workers, the dose rate should be reduced by installing a temporary shield after evaluating the dose rate for the piping, component and decontamination equipment of the decontamination path before full system decontamination. Furthermore, unnecessary exposure to radiation should be reduced by thoroughly entering and exciting the radiation area and limiting the access to the high-radiation area except for workers or persons concerned. A telemetric dosimetry system should be as installed to remotely monitor radiation levels at different locations within the decontamination flow path. Remote monitoring of radiation fields using teledosimetry worked well in assessing process effectiveness and is highly recommended. However, care must be taken to place the detectors in appropriate locations. For the prevent of body contamination, it is necessary to install a fence using a heat-resistant waterproof sheet to prevent leakage of highly radioactive contamination water. When replacing high-dose filters and ion exchange resins, it is necessary to remotely monitor to reduce the exposure dose of workers.
        208.
        2022.10 구독 인증기관·개인회원 무료
        Solid radioactive waste such as rubble, trimmed trees, contaminated soil, metal, concrete, used protective clothing, secondary waste, etc. are being generated due to the Fukushima nuclear power plant accident occurred on March 11, 2011. Solid radioactive waste inside of Fukushima NPP is estimated to be about 790,000 m3. The solid radioactive waste includes combustible rubble, trimmed trees, and used protective clothing, and is about 290,000 m3. These will be incinerated, reduced to about 20,000 m3 and stored in solid waste storage. The radioactive waste incinerator was completed in 2021. About 60,000 m3 of rubble containing metal and concrete with a surface dose rate of 1 mSv/h or higher will be stored without reduction treatment. Metal with a surface dose rate of 1 mSv/h or less are molten, and concrete undergoes a crushing process. About 60,000 m3 of contaminated soil (0.005 ~1 mSv/h) will be managed in solid waste storage without reduction treatment. The amount of secondary waste generated during the treatment of contaminated water is about 6,500 huge tanks, and additional research is being conducted on future treatment methods.
        209.
        2022.10 구독 인증기관·개인회원 무료
        A large spectrum of possible stakeholders and important factors for safety improvement during decommissioning of nuclear facilities should be identified. Decommissioning includes additional aspects which are of interest to a wider range of stakeholders. The way in which local communities, the public in general, and a wide range of other parties are engaged in dialogue about decommissioning of nuclear facilities is likely to become an increasingly important issue as the scale of the activity grows. Timely stakeholder involvement may enhance safety and can encourage public confidence. Stakeholder engagement may result in attention to issues that otherwise might escape scrutiny. Public confidence is improved if issues that are raised by the public are taken seriously and are carefully and openly evaluated. Experience in many countries has shown that transparency can be an extremely effective tool to enhance safety performance. It sets out the development and implementation of an effective two-way process between the organization and stakeholders. Meaningful engagement is characterized through a flow of communication, opinions and proposals in both directions and the use of collaborative approaches to influence and explain decisions. The process is one in which an organization learns and improves its ability to perform meaningful stakeholder engagement while developing relationships of mutual respect, in place of one-off consultations. The evolving nature of this process is particularly relevant to pipeline projects, which will have differing stakeholder engagement requirements at each phase of the project lifecycle. Activity undertaken at all stages of the process should be documented to ensure engagement success can be reviewed and improved and to ensure historical decisions or engagements are captured in case stakeholders change during the progression of time and previous consultation records are required.
        210.
        2022.10 구독 인증기관·개인회원 무료
        Recently, Japan’s government has announced Tokyo Electric Power Company’s plan to discharge contaminated water stored from the tanks of the Fukushima Daiichi nuclear power plant site into the sea. The contaminated water is treated by advanced liquid processing system (ALPS) to remove 62 radionuclide containing cesium, strontium, iodine and etc. using co-precipitation (or precipitation) and adsorption for other nuclides (except for tritium and carbon-14). The total amount of the contaminated water generated by ALPS facility is 1,311,736 m3 (as of August 18, 2022). The amount of contaminated water is estimated same as Tokyo dome volume. Under the sea discharge plan, the contaminated water will be diluted in seawater more than 100 times, and tritium concentration lowered 1/7 of the drinking water standard set by the World Health Organization (10,000 Bq/liters). The diluted water will then move through an undersea tunnel and be discharged about 1 kilometer off the coast.
        211.
        2022.10 구독 인증기관·개인회원 무료
        To efficiently manage the waste packages like drums, it is meaningful to utilize the data of placement and emplacement of disposed waste in geological storage. For the transparent and real-time management of disposal data, both technical as well as administrative factors must be included. To this end, MIRAE-EN Co., Ltd. has developed a radioactive waste tracking and management system (m-trekⓇ v1.0) through radioactive waste management life cycle which is supported by KETEP. Enhancing the functional features of m-trekⓇ, IoT-based drum location measuring and data of those drums, such as position, radionuclides, activity, and dose etc., are to be collected and monitored through data modeling and visualization, which might be utilized in emplacing the loaded drums according to specifically certain criteria of internal and external data of disposal site. Position measuring using Beacon utilizes Received Signal Strength Indicator (RSSI) to locate the correct position in 3D area. Since RSSI is affected by the surrounding environment, it is required to corrective optimization. In addition, error and deviation of previously applied Gaussian filter method, was corrected and improved through AI learning model. According to this location information and those data, the prototype in future provides the visualization of drum position and its relevant data for administrative purpose such as monitoring, emplacement and other management policy.
        213.
        2022.10 구독 인증기관·개인회원 무료
        The Nuclear Cycle Experiment Research Center is one of the facility of the Korea Atomic Energy Research Institute (KAERI). This facility is a laboratory-scale version of pyro-processing technology. Mixture depleted Uranium (DU) and depleted Uranium (DU) feed material are used in this facility for pyro-research. During summer, air conditioners that maintain temperature and humidity are always in operation to protect analysis equipments. 15 air conditioners are installed in this facility. The condensate which is generated in 15 air conditioners is collected in one place to analyze. Sampling was performed to check the level of contamination, U, pH and gamma radiation test were performed. This paper shows the degree of contamination of air conditioner condensate which is generated in the radiation management area.
        218.
        2022.10 구독 인증기관·개인회원 무료
        Identifying plausible scenarios is necessary to evaluate the performance of the repository reliably over a very long period. All features, events, and processes (FEPs) expected in the repository should be comprehensively well-defined and structured into scenarios based on the relation analysis. A platform for the FEP DB management and relation analysis is needed to facilitate the efficient composition of the scenarios. For this purpose, the CYPRUS program was developed, but abandoned due to suspended FEPs and scenario research. Thus, it became necessary to build a new easy-tomaintain platform that inherits the legacy of CYPRUS and reflects the latest research. The data structure and user interface configuration were derived to develop a new platform. The new platform provides extensive data such as the assessment context, the FEP DB, the interaction between FEP contents, the relevance to other project FEPs, the influence on performance, the scenarios for the TSPA, the AMF, and the PA Data. The platform displays the long-term evolution FEPs developed by KAERI, the international and major project FEPs in table format. The correlation between FEP items is composed of a detailed interaction matrix and visualized as the chord diagram or arc diagram. The relevance and linkages between the project FEP items are mapped and presented in the form of network diagrams and network tables. The platform designed in this study will be used to manage the FEP DB, analyze and visualize the relationship between the FEP and scenarios, and finally construct the performance assessment scenarios. It is expected that the platform itself will be used as a part of the knowledge management system and facilitate efficient collaboration and knowledge exchange among experts.
        219.
        2022.10 구독 인증기관·개인회원 무료
        The 2-round Delphi survey and Focus Group Interview (FGI) survey method, in this study, are sequentially applied for the level analysis of the high-level radioactive waste (HLW) management technologies, that are classified into transport/storage, site evaluation, and disposal categories. The 2- round Delphi survey was conducted on domestic 56 experts in the HLW field in Korea, and survey answers were managed with questionnaires distributed by e-mail. In the FGI survey, domestic 24 experts from management field were formed into three groups to conduct in-depth interviews. Past research achievements including journal papers, intellectual properties and the expert opinions presented at expert hearing on HLW technology were used as reference materials. As a result of the survey, in this study, the average domestic technology level compared to the leading countries was 83.1% in transport area, 79.6% in storage area, 62.2% in site evaluation area, and 57.4% in disposal area, respectively. When compared to the former level analysis results in 2017, technology level of transport-storage area increased by 8.6%, and the site evaluation-disposal technology area decreased by 7.27%. The highest factor that increase the level of technology in the transport-storage field was due to the increased R&D program resulting on journal papers, intellectual properties. In addition, the decrease factor in the level of technology in the site evaluation-disposal field was mainly due to relatively low R&D program when compared to the leading countries. Suggested method for the level survey can be used to find out the basic data of the lower tech technologies, to estimate the efficient research budgets and to prepare the R&D human resources. With this regards, R&D roadmap can be matured with suggested prediction method for the domestic technology level on HLW.
        220.
        2022.10 구독 인증기관·개인회원 무료
        Currently, the most widely accepted disposal concept for long-term isolation of high level radioactive waste including spent nuclear fuels is to disposal in a deep geological repository designed and constructed with multiple barriers composed of engineered and natural barriers so that the waste can be completely isolated in a stable deep geological environment. In this concept, an important consideration is the heat generated from the waste due to the large amount of fission products present in the high level waste loaded in the disposal container. For safe and complete isolation of high level radioactive waste in the deep geology, the disposal concepts that meet the thermal requirements for the disposal system design have been developed by harmonizing the thermal characteristics of engineered and natural barriers in Korea. In this paper, the deposition hole configuration and the decay heat dissipation area (surface area) of disposal container were considered for the efficient thermal management in the deep geological disposal concept. Heat transfer through the waste form, its container and surrounding components and the rock will be mainly by conduction. Heat transfer by radiation and convection can be negligible after backfilling. When considering heat conduction, according to Fourier’s law, if the thermal conductivity of the repository components is the same, the greater the heat dissipation area and the adjacent temperature gradient, the greater the conduction effect. Therefore, rather than the conventional concept of loading 4 PWR spent fuel assemblies per disposal container and placing one disposal container in a deposition hole, it is better to load one assembly per disposal container and place 4 disposal containers in a deposition hole. In this case, it was found that the disposal area could be reduced through efficient thermal management. Considering this thermal management method as an alternative to the concept of deep geological disposal, additional research is needed.