검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 43

        21.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objectives of this study was to examine experimentally the microexplosion phenomena of single droplet W/O(water-in-oil) type emulsified fuel. Also, measured the combustion characteristics of single droplet emulsified fuel for microexplosion phenomena in atmospheric pressure condition. The larger quantity of adding water makes microexplosion phenomenon with higher intensity of sound level, because larger water droplet has better coalescence for emulsified fuel. The small quantity of adding water makes puffing with lower sound level intensity. In latter period of extinction, large size droplet of the emulsified fuel breaks down rapidly to small size droplet, and microexplosion phenomenon occurs with multi step combustion.
        4,000원
        22.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Generally, in the previous researches, it is found that a water droplet is respectively in Wenzel and Cassie-Baxter states on hydrophilic/hydrophobic rough surfaces. And Wenzel and Cassie-Baxter equations are used to estimate the apparent contact angle on the surfaces. However, difference between measured apparent contact angle and estimated apparent contact angle with the equations is recently reported and new model to estimate apparent contact angle on rough surfaces is proposed. In this study, wetting state and apparent contact angle on the surfaces with micro-pillars should be investigated to find solution of this argument. Using the high resolution microscope, the wetting state of the D.I.water droplet on the surface with micro-pillars was visualized and apparent contact angle of the D.I.water droplet was measured. On the basis of experimental data, the equations to estimate apparent contact angle were verificated and the general wetting characteristics on the surfaces with micro-pillars are finally classified.
        4,000원
        23.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have investigated the influence of system composition and preparation conditions on the particle size of vitamin E acetate (VE)-loaded nanoemulsions prepared by PIC(phase inversion composition) emulsification. This method relies on the formation of very fine oil droplets when water is added to oil/surfactant mixture. The oil-to-emulsion ratio content was kept constant (5 wt.%) while the surfactant-to-oil ratio (%SOR) was varied from 50 to 200 %. Oil phase composition (vitamin E to medium chain ester ratio, %VOR) had an effect on particle size, with the smallest droplets being formed below 60 % of VOR. Food-grade non-ionic surfactants (Tween 80 and Span 80) were used as an emulsifier. The effect of f on the droplet size distribution has been studied. In our system, the droplet volume fraction, given by the oil volume fraction plus the surfactant volume fraction, was varied from 0.1 to 0.3. The droplet diameter remains less than 350 nm when O/S is fixed at 1:1. The droplet size increases gradually as the increasing the volume fraction. Particle size could also be reduced by increasing the temperature when water was added to oil/ surfactant mixture. By optimizing system composition and homogenization conditions we were able to form VE-loaded nanoemulsions with small mean droplet diameters (d < 50 nm). The PIC emulsification method therefore has great potential for forming nanoemulsion-based delivery systems for food, personal care, and pharmaceutical applications.
        4,000원
        26.
        2000.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A three-dimensional digital image processing technique is proposed to quantitatively predict the dispersion phenomena of oil droplet onto the surface of the water. This technique is able to get the dispersion rate of an oil droplet three-dimensionally just below the surface of the water over time. The obtained dispersion rate obtained through this technique is informative to the investigation into the relationship among the gravity, surface tensions between oil, water, and air. This technique is based upon the three-dimensional PIV(Particle Imaging Velocimetry) technique and its system mainly consists of a three CCD(Charge Coupled Device) cameras, an image grabber, and a host computer in which an image processing algorithm is adopted for the acquisition of dispersion rate oil an oil droplet.
        4,000원
        27.
        1992.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, many researchers make a great effort to develop high efficient marine diesel engines using low grade heavy oil, and also study substitution fuel oil for engines and boilers. In case of Fisheries Vessels, we need to know that fish oil can be substituted for fuel oil. Therefore, it is studied that evaporation, ignition and combustion phenomena of the single droplet of fish oils (i.e., Sardine fish oil, File fish oil and Alaska pollac oil) on heated plane surface to evaluate appropriateness as substitution oil. Methanol and light oil are tested simultaneously to help the evaluation on these Fish oils. The results are summarized as follows: 1. The type of evaporation and combustion is spherical evaporation in case of methanol and light oil. And fish oil blended with light oil was finished after spherical evaporation happen when high temperature. 2. Ignition of Pure fish oil was shorter than that of fish oil blended with light oil. 3. Heat transferred to droplet could make qualitative comparison by contact diameter of droplet with hot surface as time changes. Life time of droplet according to the change of heated surface temperature was greatly influenced by droplet contact condition on the heated surface. 4. As far as combustion phenomena was concerned, apparent diameter of the fish oil droplet increased after ignition and decreased suddenly by internal boiling of droplet. 5. Three fish oils had similar phenomena on the evaporation, ignition and combustion. 6. Evaporation and combustion feature of fish oil could not be shown by coefficient of evaporation velocity of droplet and coefficient of combustion velocity of droplet.
        4,300원
        28.
        1992.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to understand and explain the spary combustion, it was necessary to understand the disintegration mechanisms of liquid jet. To understand the disintegration mechanisms of liquid jet, the disintegration phenomena and uniform droplet production regions of testing liquid jet was investigated by means of longitudinally vibration capillary nozzle, which was injected the testing liquids. The testing liquids were light oil and light oil and light oil blended with 25wt% fish oil (File fish oil, Sardine fish oil, Alaska pollac oil) The results can be summarized as follows: 1. The uniform droplet phenomena have been changed according to the frequency of capillary tube, the jet velocity and physical properties of testing oils. 2. Within the region of uniform droplet, Reynold number was increased as Weber number increases. 3. The lower limit of wave length in which uniform droplet was produced 0.8d which was lower than Rayleigh wave length 4. The light oil blended with file fish oil which has lower viscosity and surface tension had the widest uniform droplet production region on the frequency and velocity among testing oils. But light oil blended with sardine fish oil were similar with light oil in the uniform production region.
        4,000원
        29.
        1991.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, to percuss whether fish oil can substitute for marine fuel oil, the characteristics on the evaporation and ignition of 3 fish oils, Sardine oil, File fish oil and Alaska pollac oil, were investigated experimentally by suspending single fish oil droplel in hot atmosphere, and experiments on methanol and light oil were also carried out to compare the characteristics. The results abtained are summarized as follow; 1) Evaporation and ignition phenomena on the methanol and light oil by the present experimental method agreeded with the results of the earlier investigation. 2) The characteristic on evaporation and ignition of all 3 fish oils took the same pattern; in late stage of evaporation at atmospheric Temperature 550℃ droplet rapidly expanded and contracted, and then remained solid corbide, but in case of 650℃ rapidly expanded and ignitied, and then completly burned non-remained solid carbide. 3) As fish oil mixed with light oil (50% weight), in beginning stage of evaporation droplet depended on the characteristics of light oil, but in end stage depended on fish oil. 4) Ignition temperature of fish oil droplets was about 470℃, higher than about 250℃ of light oil, but atmospheric temperature to ignite droplet was about 650℃, lower than about 750℃ of light oil.
        4,000원
        30.
        2020.12 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to improve and supplement the system of cryopreservation for adventitious bulbs induced by tissue cultured bulb-scales of lily (Lilium spp.) cvs. ‘Milky way’. The explants, bulblets and bulb-scale-bulblets, were treated to low temperature (4℃) for 7 days prior to the pre-culture. The adventitious bulbs were pre-cultured in Murashige and Skoog (MS) liquid medium supplemented with sucrose (0.3 and 0.7M). The pre-cultured adventitious bulbs were treated to loading solution (LS1 or LS2, C4 or C6) containing 35% of PVS3 (LS1, C4) or 40% of PVS3 (LS2, C6) for 40 min and exposed to dehydration solution (PVS3, B1) containing 50% glycerol and 50% sucrose for 60 min at 25℃. The adventitious bulbs were moved onto droplets containing 3 μl PVS3 on sterilized aluminum foils, and then soaked into liquid nitrogen (LN) for 60 min. The result of highest regrowth rate as 65.7% was obtained in cold treatment (4℃), osmoprotected with LS1 solution, and cultured in PCM3 medium by using bulb-scale-bulblet for cryopreservation. This result shows that droplet-vitrification could be used as a promising method for long-term storage of lily genetic resource.
        31.
        2020.12 KCI 등재 서비스 종료(열람 제한)
        This study describes an efficient and stable droplet vitrification following cryopreservation of strawberry shoot tip (Fragaria × ananassa Duch.) accessions ‘Massey’ and ‘MDUS3816’. The shoot tips were precultured in Murashige and Skoog (MS) liquid medium supplemented with sucrose (0.3-0.7M). Precultured explants were osmoprotected with loading solution (LS, C4) containing 17.5% glycerol and 17.5% sucrose for 40 min and exposed to dehydration solution (B1) containing 50% glycerol and 50% sucrose for 40 min at 25oC. Subsequently, the explants were transferred onto droplets containing 2.5 μL PVS3 on sterilized aluminum foils (4 ㎝× 0.5 ㎝) prior to direct immersion in liquid nitrogen (LN) for 1 h. The highest regrowth rate (%) in both the cultivars was obtained when the shoot tips were precultured with 0.3M sucrose for 30 h + 0.5M sucrose for 16 h at 25oC. The cryopreserved shoots tips exhibited 57.8 % recovery rate by culturing in NH4NO3-free MS medium supplemented with 3% sucrose, 1.0 g/L casein, 1.0㎎/L GA3, and 0.5 ㎎/L BA for 5 weeks and in MS medium supplemented with 0.5 ㎎/L GA3 for 8 weeks. Variation was not observed in both of ploidy analysis and morphological investigation on plantlets of two accessions cryopreserved under variable preculture conditions.
        32.
        2019.12 KCI 등재 서비스 종료(열람 제한)
        This study describes an efficient and widely applicable droplet-vitrification following cryopreservation for shoot tips of strawberry (Fragaria × ananassa Duch.) cvs. ‘Wonkyo3114’ and ‘Gurumi40’. The shoot tips were precultured in Murashige and Skoog (MS) liquid medium supplemented with sucrose (0.3-0.5M). Precultured explants were osmoprotected with loading solution (LS, C4) containing 20% glycerol and 20% sucrose for 40 min and exposed to dehydration solution (B5) containing 40% glycerol and 40% sucrose for 40 min at 25℃, Subsequently, the explants were transferred onto droplets containing 2.5 μL PVS3 on sterilized aluminum foils (4 ㎝ × 0.5 ㎝) prior to direct immersion in liquid nitrogen (LN) for 1 h. The highest regrowth rate (%) in both the cultivars was obtained when the shoot tips were precultured with MS + 0.3M sucrose for 40 h at 25℃. The cryopreserved shoots tips exhibited 55% regrowth rate by culturing in NH4NO3-free MS medium supplemented with 3% sucrose, 1.0 g/L casein, 1.0㎎/L GA3, and 0.5 ㎎/L BA for 5 weeks and in MS medium supplemented with 0.5 ㎎/L GA3 for 8 weeks. This result shows that droplet-vitrification could be employed as a promising method for cryostorage of strawberry germplasm.
        33.
        2018.12 KCI 등재 서비스 종료(열람 제한)
        This study describes the successful establishment of a cryopreservation protocol for Citrus limon cultivars: ‘Frost Eureka limon’ and ‘Cook Eureka limon’, using a droplet-vitrification method. The shoot tips that were excised from in vitro grown seedlings of the two cultivars were preserved in liquid nitrogen (LN) and successfully regenerated into whole plants. Excised shoot tips were pre-cultured for 1 or 2 days in 0.3 M and 0.5 M sucrose solutions at 25℃ and incubated in a loading solution (LS) composed of 17.5% glycerol + 17.5% sucrose in Murashige and Skoog (MS) medium for 40 min at 25℃. Prior to direct immersion in LN for 1 h, the shoot tips were dehydrated with plant vitrification solution 2 (PVS2) at 0℃ or PVS3 at 25℃. The frozen shoot tips were re-warmed and unloaded with 1.2 M sucrose in ½ MS for 30 min at 25℃. Shoot tips were post-cultured overnight on survival medium and then micrografted onto ‘trifoliate orange’ (Poncirus trifoliate (L.) Raf. seedling rootstocks for recovery and to produce whole plants. The highest regrowth rates were 53.5% and 50.3% for cryopreserved shoot tips of ‘Frost Eureka limon’ and ‘Cook Eureka limon’, respectively, when pre-cultured in 0.3 M and 0.5 M sucrose concentrations in a sequencing manner, with LS and treated with PVS2 for 60 min at 0℃. We also investigated whether the ammonium ion concentration on post-culture medium affected the viability of the cryopreserved Citrus shoot tips. The viability of cooled samples, following culturing on woody plant media (WPM) containing ¼ ammonium nitrate overnight before micrografting, was the highest (70.3%) in ‘Frost Eureka limon’. The study described here is a cost-effective and safe method to conserve Citrus fruit cultivars, for the improvement and large-scale multiplication of fruit plants and for breeding disease resistance.
        34.
        2018.12 KCI 등재 서비스 종료(열람 제한)
        This study describes an efficient and widely applicable droplet-vitrification following cryopreservation for shoot tips of Chrysanthemum morifolium (Ramat.) cvs. ‘Borami’ and ‘Yes morning’. The shoot tips of Chrysanthemum were precultured in Murashige and Skoog (MS) liquid medium supplemented with sucrose (0.3-0.7 M). Precultured explants were treated with loading solution (LS, C6) containing glycerol 20% and sucrose 20% for 30 min and exposed to dehydration solution (B5) containing 40% of glycerol and 40% of sucrose for 60 min at 25℃, and then transferred onto droplets containing 2.5 ㎕ PVS3 on sterilized aluminum foils (4 ㎝ × 0.5 ㎝) prior to direct immersion in liquid nitrogen (LN) for 1 h. The highest regeneration rate (%) was obtained when shoot tips were precultured with treatment-2 (exposing of shoot tips to MS + 0.3M sucrose for 30 h and then treated with MS+0.5 M sucrose for 16 h) at 25℃ in both the cultivars. The viability of cooled samples, followed by culturing on NH4NO3-free MS medium for first 5 days was increased to two-fold (80.7%) regrowth rate over those cultured on normal MS medium or MS medium containing plant growth regulators. This result shows droplet-vitrification would be a promising method for cryobanking chrysanthemum germplasm.
        35.
        2018.10 KCI 등재 서비스 종료(열람 제한)
        Water and oxygen are two of the most essential molecules for many species on earth. Their unique properties have been studied in many areas of science. In this study, the interaction of water and oxygen molecules was observed at the nano-scale. Using molecular dynamics, a water droplet with 30,968 water molecules was simulated. Then, 501 oxygen molecules were introduced into the domain. A few oxygen molecules were attracted to the surface of the water droplet due to van der Waals forces, and some oxygen molecules actually entered the water droplet. These interactions were visualized and quantified at four temperatures ranging from 280 to 370 K. It was found that at high temperatures, there was a higher possibility of the oxygen molecules penetrating the water droplet than that at lower temperatures. However, at lower temperatures, oxygen molecules were more likely to be found interacting at the surface of the water droplet than at high temperatures.
        36.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        This study investigated the feasibility of odor removal using ultrasonic droplets of electrolyzed water. 91.65% of the injected electrons were converted to oxidizing agents including hypochlorous acid at HCl 2.2%, 3 V, and a retention time of 5 min. The size of the droplets generated by the ultrasound showed a distribution with D25=1.359 μm and D75=2.506 μm. The odor removal efficiency of the electrolyzed water droplets was over 90% for a composite odor composed of acetaldehyde, hydrogen sulfide, and ammonia, while that of tap water droplets was 50%. The electrolyzed water droplets were also effective in removing ammonia generated in full-scale organic waste treatment facilities.
        37.
        2016.07 KCI 등재 서비스 종료(열람 제한)
        Dissolved oxygen is necessary for many biological processes as well as many industrial practices. Dissolved oxygen released from water in dissolved air flotation (DAF) systems can be have many different applications. However, DAF systems are very costly to operate. To develop more efficient DAF systems, a deeper understanding of the process of oxygen being released from water is required. In this study, molecular dynamics (MD) simulations were used to simulate 100 oxygen molecules surrounded by 31002 water molecules at temperatures ranging from 0℃ to 100℃. Simulations were carried out for 10 ns, during which, in most cases, all the oxygen molecules were released from the water droplet. With MD simulations, visualization of the molecules escaping the water droplet was possible, which aided the understanding of the interactions between molecules at the nano-scale. The results showed that as the oxygen molecules moved near the edge of the water droplet that the oxygen molecules hesitated before escaping the water droplet or returned to the interior of the water droplet. This was because of the attractive forces between the water and oxygen molecules. Moreover, after most of the oxygen molecules were released from the droplet, some were found to return to the droplet's edge or even the interior of the droplet. It was also confirmed that oxygen molecules were released at a faster rate at higher temperatures.
        38.
        2010.06 KCI 등재 서비스 종료(열람 제한)
        일반적으로 보석란으로 알려진 금선련은 대만에서 폐나 간의 질병 및 발열이나 두통 치료를 위한 전통식물약제로 사용되어 왔다. 본 연구에서는 생물반응장치를 이용하여 조직배양된 금선련 식물체에 대하여 화장품 성분으로써 응용 가치를 평가하였다. 이미 몇몇 보고 된 논문에서 금선련은 항암활성, 면역 활성, 간 보호 활성 및 지질대사의 약리학적 활성 등에 대한 연구가 되고 있지만 화장품 성분으로 효능들에 대한 연구는 알려져 있지 않다. 따라서 본 연구에서는 생물반응장치를 이용하여 조직배양된 금선련 추출물에 대하여 미백 및 항비만 관련한 효능 효과를 평가하였다. 실험 결과 조직배양된 금선련 추출물은 tyrosinase 활성 및 멜라닌 합성 억제 효과뿐만 아니라 지방 전구 세포의 지방세포로의 분화를 억제시킴으로써 세포 내 지질 축적을 억제하였다. 이러한 결과들은 피부보호를 위한 화장품 성분으로서 응용 가능성을 제공 할 수 있을 것으로 사료된다.
        39.
        2009.06 KCI 등재 서비스 종료(열람 제한)
        한국에서 ‘가가이모과잎'이라고 불리는 인도의 전통 식물 약재인 Gymnema sylvestre는 당뇨의 원인인 생체 내당의 대사를 조절하는 약재로 이용되어 왔다. 본 연구에서는 Gymnema sylvestre 잎으로부터 인공적으로 조직 배양한 캘러스를 대량 배양하였다. 배양된 캘러스부터 추출물을 얻은 후 지방 전구 세포인 3T3-Ll 세포를 이용하여 항비만 효과를 관찰하였다. 결과적으로, Gymnema sylvestre 잎으로부터 조직 배양한 캘러스 추출물은 지방 전구 세포의 지방세포로의 분화뿐만 아니라 세포 내 지질 축적을 억제 하였다. 또한 지방세포의 형성을 조절하는 초기 지방세포 내의 전사인자인 C/EBP-α 발현을 억제하면서 인슐린에 의해 유도된 지방세포의 분화를 억제하였다. 따라서 이러한 결과들은 피부를 위한 화장품 성분으로서 응용 가능성을 제공할 수 있을 것으로 사료된다.
        1 2 3