검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 58

        21.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the microstructure and characterization of an overlay welding layer using Fe-based composite powders are reported. The effects of the number of passes and composition of powders on the microstructure and mechanical properties are investigated in detail. The welding wire and powders are deposited twice on a stainless-steel rod using a laser overlay welding process. The microstructure and structural characterization are performed by scanning electron microscopy and X-ray diffraction. The mechanical properties of the first and second overlay layers are analyzed through the micro-Vickers-hardness tester and abrasion wear tester. In the second overlay layer, the hardness and specific wear are approximately 840 Hv and 2.0 × 10−5 mm3/Nm, respectively. It is suggested that the increase of the volume fractions of (Cr,Fe)7C3 and NbC phases in the second welding layer enhances the hardness and wear resistance.
        4,000원
        22.
        2017.11 구독 인증기관·개인회원 무료
        Due to the globalization of food supply have been growing, there have been a great demands for food safety and quality assuarance for on-site detection. On-site detetction isuue is the process should be fast, simple, user-friendly and require minimal equipments. Herein, we developed a Radial chromatography (RC) biosensor integrated with the immuno-gold nanoparticles-coated magnetic nanoparticle (AuNPs@Fe3O4) for specific separation and detection of the target bacteria, E. coli O157:H7, in sample. The immuno-AuNPs@Fe3O4 specifically binds to E.coli O157:H7 creating AuNP@Fe3O4-E.coli complexes and captured bacteria were concentrated by magnet. The complex can be identified with inner ring derived from the difference of mobility of free AuNPs@Fe3O4 on the RC sensor. Our results show that AuNPs@Fe3O4 based RC sensor has high sensitivity to the target bacteria over non-target bacteria with a detection limit of 103 CFU/ml. Our system offers a rapid and sensitive means of detecting E.coli O157:H7 with naked eyes, which can be applied to the field diagnosis.
        23.
        2017.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        An optimum route to fabricate oxide dispersion strengthened ferritic superalloy with desired microstructure was investigated. Two methods of high energy ball milling or polymeric additive solution route for developing a uniform dispersion of Y2O3 particles in Fe-Cr-Al-Ti alloy powders were compared on the basis of the resulting microstructures. Microstructural observation revealed that the crystalline size of Fe decreased with increases in milling time, to values of about 15-20 nm, and that an FeCr alloy phase was formed. SEM and TEM analyses of the alloy powders fabricated by solution route using yttrium nitrate and polyvinyl alcohol showed that the nano-sized Y-oxide particles were well distributed in the Fe based alloy powders. The prepared powders were sintered at 1000 and 1100 oC for 30 min in vacuum. The sintered specimen with heat treatment before spark plasma sintering at 1100 oC showed a more homogeneous microstructure. In the case of sintering at 1100 oC, the alloys exhibited densified microstructure and the formation of large reaction phases due to oxidation of Al.
        4,000원
        24.
        2016.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the glass-forming ability and mechanical properties of newly developed Fe-Mn-Cr-Mo-B-C-P-Si-Al bulk amorphous alloys were investigated, and metalloid elements such as B, C, and P were found to have a strong influence on the properties of the Fe-based amorphous alloys. When the total metalloid content (B, C, and P) is less than 5%, only the crystal phase is formed, but the addition of more than 10% metalloid elements enhances the glass forming ability. In particular, the alloys with 10 % metalloid content exhibit the best combination of very high compressive strength (~2.8 GPa) and superior fracture elongation (~30 %) because they consist of crystal/amorphous composite phases.
        4,000원
        26.
        2014.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fe-based amorphous coatings were fabricated on a soda-lime glass substrate by the vacuum kinetic spray method. The effect of the gas flow rate, which determines particle velocity, on the deposition behavior of the particle and microstructure of the resultant films was investigated. The as-fabricated microstructure of the film was studied by field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HR-TEM). Although the activation energy for transformation from the amorphous phase to crystalline phase was lowered by severe plastic deformation and particle fracturing under a high strain rate, the crystalline phases could not be found in the coating layer. Incompletely fractured and small fragments 100~300 nm in size, which are smaller than initial feedstock material, were found on the coating surface and inside of the coating. Also, some pores and voids occurred between particle-particle interfaces. In the case of brittle Fe-based amorphous alloy, particles fail in fragmentation fracture mode through initiation and propagation of the numerous small cracks rather than shear fracture mode under compressive stress. It could be deduced that amorphous alloy underwent particle fracturing in a vacuum kinetic spray process. Also, it is considered that surface energy caused by the formation of new surfaces and friction energy contributed to the bonding of fragments.
        4,000원
        27.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe-based oxide dispersion strengthened (ODS) powders were produced by high energy ball milling, fol- lowed by spark plasma sintering (SPS) for consolidation. The mixed powders of 84Fe-14Cr-2Y2O3 (wt%) were mechanically milled for 10 and 90 mins, and then consolidated at different temperatures (900~1100o C). Mechani- cally-Alloyed (MAed) particles were examined by means of cross-sectional images using scanning electron micros- copy (SEM). Both mechanical alloying and sintering behavior was investigated by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM). To confirm the thermal behavior of Y2O3, a replica method was applied after the SPS process. From the SEM observation, MAed powders milled for 10 min showed a lamella structure consisting of rich regions of Fe and Cr, while both regions were fully alloyed after 90 min. The results of sintering behavior clearly indicate that as the SPS temperature increased, micro-sized defects decreased and the den- sity of consolidated ODS alloys increased. TEM images revealed that precipitates smaller than 50 nm consisted of YCrO3.
        4,000원
        28.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research, the coating behavior of Mg and Fe desulfurization powder fabricated by low energy and conventional planetary mill equipment was investigated as a function of milling time, which produces uniform Fe coated powders due to milling energy. Since high energy ball milling results in breaking the Fe coated Mg powders into coarse particles, low energy ball milling was considered appropriate for this study, and can be implemented in desulfurization industry widely. XRD and FE-SEM analyses were carried out to investigate the microstructure and distribution of the coating material. The thickness of the Fe coating layer reaches a maximum of 14 at 20 milling hours. The BCC structures of Fe particles are deformed due to the slip system of Fe coated Mg particles.
        4,000원
        29.
        2012.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Fe-based self-fluxing alloy powders and TiC particles were ball-milled and subsequently compacted and sintered at various temperatures, resulting in the TiC particle-reinforced Fe self-fluxing alloy hybrid composite, and the microstructure and micro-hardness were investigated. The initial Fe-based self-fluxing alloy powders and TiC particles showed the spherical shape with a mean size of approximately 80 and the irregular shape of less than 5 , respectively. After ball-milling at 800 rpm for 5 h, the powder mixture of Fe-based self-fluxing alloy powders and TiC particles formed into the agglomerated powders with the size of approximately 10 that was composed of the nanosized TiC particles and nano-sized alloy particles. The TiC particle-reinforced Fe-based self-fluxing alloy hybrid composite sintered at 1173 K revealed a much denser microstructure and higher micro-hardness than that sintered at 1073 K and 1273 K.
        4,000원
        31.
        2011.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the effect of solvent on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid and compared the alloy particles fabricated by three different methods (PWE in liquid, PWE in Ar, plasma arc discharge), for high temperature oxidation-resistant metallic porous body for high temperature soot filter system. Three different solvents (ethanol, acetone, distilled water) of liquid were adapted in PWE in liquid process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. The alloy powder synthesized by PWE in ethanol has good particle size and no surface oxidation compared to that of distilled water. Since the Fe-based alloy powders, which were fabricated by PWE in Ar and PAD process, showed surface oxidation by TEM analysis, the PWE in ethanol is the best way to fabricate Fe-based alloy nano powder.
        4,000원
        32.
        2011.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the effect of wire diameter and applied voltage on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid, for high temperature oxidation-resistant metallic porous body for high temperature particulate matter (or soot) filter system. Three different diameter (0.1, 0.2, and 0.3 mm) of alloy wire and various applied voltages from 0.5 to 3.0 kV were main variables in PWE process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. It was controlled the number of explosion events, since evaporated and condensed nano-particles were coalesced to micron-sized secondary particles, when exceeded to the specific number of explosion events, which were not suitable for metallic porous body preparation. As the diameter of alloy wire increased, the voltage for electrical explosion increased and the size of primary particle decreased.
        4,000원
        34.
        2010.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of Sn and Mg on microstructure and mechanical properties of Cu-Fe-P alloy were investigated by using scanning electron microscope, transmission electron microscope, tensile strength, electrical conductivity, thermal softening, size and distribution of the precipitation phases in order to satisfy characteristic for lead frame material. It was observed that Cu-0.14wt%Fe-0.03wt%P-0.05wt%Si-0.1wt%Zn with Sn and Mg indicates increasing tensile strength compare with PMC90 since Sn restrained the growth of the Fe-P precipitation phase on the matrix. However, the electrical conductivity was decreased by adding addition of Sn and Mg because Sn was dispersed on the matrix and restrained the growth of the Fe-P precipitation. The size of 100 nm Mg3P2 precipitation phase was observed having lattice parameter a:12.01Å such that [111] zone axis. According to the results of the study, the tensile strength and the electrical conductivity satisfied the requirements of lead frame; so, there is the possibility of application as a substitution material for lead frame of Cu alloy.
        4,000원
        35.
        2010.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study looked at high performance copper-based alloys as LED lead frame materials with higher electrical-conductivity and the maintenance of superior tensile strength. This study investigated the effects on the tensile strength, electrical conductivity, thermal softening, size and distribution of the precipitation phases when Cr was added in Cu-Fe alloy in order to satisfy characteristics for LED Lead Frame material. Strips of the alloys were produced by casting and then properly treated to achieve a thickness of 0.25 mm by hot-rolling, scalping, and cold-rolling; mechanical properties such as tensile strength, hardness and electrical-conductivity were determined and compared. To determine precipitates in alloy that affect hardness and electrical-conductivity, electron microscope testing was also performed. Cr showed the effect of precipitation hardened with a Cr3Si precipitation phase. As a result of this experiment, appropriate aging temperature and time have been determined and we have developed a copper-based alloy with high tensile strength and electrical-conductivity. This alloy has the possibility for use as a substitution material for the LED Lead Frame of Cu alloy.
        4,000원
        36.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electromagnetic wave energies are consumed in the form of thermal energy, which is mainly caused by magnetic loss, dielectric loss and conductive loss. In this study, CNT was added to the nanocrystalline soft magnetic materials inducing a high magnetic loss, in order to improve the dielectric loss of the EM wave absorption sheet. Generally, the aspect ratio and the dispersion state of CNT can be changed by the pre-ball milling process, which affects the absorbing properties. After the various ball-milling processes, 1wt% of CNTs were mixed with the nanocrystalline base powder, and then further processed to make EM absorption sheets. As a result, the addition of CNT to Fe-based nanocrystalline materials improved the absorption properties. However, the increase of ball-milling time for more than 1h was not desirable for the powder mixture, because the ballmilling caused the shortening of CNT length and the agglomeration of the CNT flakes.
        4,000원
        37.
        2009.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Zr-based bulk metallic glass matrix composites of a mixture of gas-atomized metallic glass powders and Fe-based nanostructured powders were fabricated by spark plasma sintering. The Fe-based nanostructured powders adopted for the enhancement of plasticity were well distributed in the matrix after consolidation, and the matrix remains as a fully amorphous phase. The successful consolidation of metallic glass matrix composite with high density was attributed to viscous flow in the supercooled liquid state during spark plasma sintering. Unlike other amorphous matrix composites, in which improved ductility could be obtained at the expense of their strength, the developed composite exhibited improvement both in strength and ductility. The ductility improvement in the composite was considered to be due to the formation of multiple shear bands under the presence of the Fe-based nanostructured particles.
        4,000원
        38.
        2009.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electromagnetic wave absorption sheets were fabricated by mixing of nanocrystalline soft magnetic powder, charcoal powder and polymer based binder. The complex permittivity, complex permeability, and scattering parameter have been measured using a network analyzer in the frequency range of 10 MHz10 GHz. The results showed that complex permittivity of sheets was largely dependent on the frequency and the amount of charcoal powder : The permittivity was improved up to 100 MHz, however the value was decreased above 1 GHz. The power loss of electromagnetic wave absorption data showed almost the same tendency as the results of complex permittivity. However, the complex permeability was not largely affected by the frequency, and the values were decreased with the addition of charcoal powder. Based on the results, it can be summarized that the addition of charcoal powder was very effective to improve the EM wave absorption in the frequency range of 10 MHz1 GHz.
        4,000원
        39.
        2009.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to increase the magnetic loss for electromagnetic(EM) wave absorption, the soft magnetic (at%) alloy strip was used as the basic material in this study. The melt-spun strip was pulverized using an attrition mill, and the pulverized flake-shaped powder was crystallized at for 1h to obtain the optimum grain size. The Fe-based powder was mixed with 2 wt% , wt% carbon black, and polymer-based binders for the improvement of electromagnetic wave absorption properties. The mixture powders were tape-cast and dried to form the absorption sheets. After drying at for 1h, the sheets of 0.5 mm in thickness were made by rolling at , and cut into toroidal shape to measure the absorption properties of samples. The characteristics including permittivity, permeability and power loss were measured using a Network Analyzer(N5230A). Consequently, the properties of electromagnetic wave absorber were improved with the addition of both and carbon black powder, which was caused by the increased dielectric loss of the additive powders.
        3,000원
        40.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electromagnetic (EM) wave absorption properties of the nanocrystalline powder mixed with 5 to 20 vol% of Ni-Zn ferrites has been investigated in a frequency range from 100MHz to 10GHz. Amorphous ribbons prepared by a planar flow casting process were pulverized and milled after annealing at 425 for 1 hour. The powder was mixed with a ferrite powder at various volume ratios to tape-cast into a 1.0mm thick sheet. Results showed that the EM wave absorption sheet with Ni-Zn ferrite powder reduced complex permittivity due to low dielectric constant of ferrite compared with nanocrystalline powder, while that with 5 vol% of ferrite showed relatively higher imaginary part of permeability. The sheet mixed with 5 vol% ferrite powder showed the best electromagnetic wave absorption properties at high frequency ranges, which resulted from the increased imaginary part of permeability due to reduced eddy current.
        4,000원
        1 2 3