검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 33

        21.
        2010.06 KCI 등재 서비스 종료(열람 제한)
        본 연구는 크루즈선에 적합한 생물학적 오 폐수처리장치 개발을 위하여 SBR, MBR, MSBR 공정을 Lab scale 실험을 수행하여 오염물 처리 효율과 크루즈선이라는 특수 환경과의 접목성을 검토한 결과 MSBR공정이 처리효율과 장치 운영 면에서 가장 적합한 공정으로 평가되었다. MSBR 공정은 처리 대상 물질이 특정 성분에 국한 되지 않고 유기물, 영양염류, 병원성 미생물 처리에 있어 모두 안정적인 효율을 나타내었으며, 소요용적 및 장치의 운영 면에서도 우수한 결과를 나타내어 선박이라는 특수한 현장 적용에 매우 유리한 공정으로 확인되었다. MSBR 공정의 BOD, COD 및 SS 제거 효율은 99%, 98%, 99%로 나타나 IMO의 규제 기준을 모두 만족하였으며, 총질소와 인의 제거 효율도 76%, 59%로 강화되어 가는 해양오염기준을 충만족시킬 수 있는 공정으로 판단되었다.
        22.
        2010.06 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 선박오수 고도처리시스템 개발을 목적으로 SBR 공법을 도입하여 선박용 오수처리장치를 제작한 후 성능 평가를 수행하였다. Lab scale 과 Pilot Plant 규모의 기초 실험을 토대로 제작한 시제품은 시운전 결과 IMO의 Res.MEPC.159(55) 성능 기준을 충분히 만족시켰으며, 질소와 인의 동시처리도 가능하여 강화되어 가는 해양환경기준을 충분히 만족시킬 수 있을 것으로 평가되었다. 선박오수와 유사한 실 하폐수를 대상으로 한 제품 가동 결과 유기물의 경우 90% 이상, 질소와 인의 경우 50% 이상의 처리 효율을 나타내었으며, 운전 기간 내내 안정적인 처리 효율을 보이며 선박이라는 특수한 환경과의 접목성도 매우 우수한 시스템으로 확인되었다.
        23.
        2009.04 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        회분식 반응기를 이용해 GMO와 CLA로부터 Lipozyme RMIM의 반응을 통해 DAG 함유 유지를 합성하였다. 합성된 DAG 함유 유지의 조성은 총 DAG의 함량이 61 area%로 나타났으며, MAG, FFA, 그리고 TAG가 각각 30, 3.4 그리고 5.4 area%로 나타났다. 합성된 DAG 함유 유지는 short path distillation을 이용하여 DAG를 분리하였고, DAG를 포함한 증류결과물인 residue부분(DAG o
        24.
        2005.06 KCI 등재 서비스 종료(열람 제한)
        선박에서 발생하는 오·폐수를 처리하기 위하여 생물학적 질소 및 인의 제거공정으로 사용되고 있는 연속 회분식 공정을 이용하여 유기물의 제거 특성과 산소 소모량, 반응조내에서 우점하고 있는 Bacillus sp.균주의 상태를 알아보기 위하여 Lab-sacle로 수행하였다. 반응조에서 COD의 제거효율은 92.0%, 암모니아성질소는 90.0%, 총질소의 제거효율은 84.0%, 인의 제거효율은 93.0%로 나타났다. Bacillus sp.를 이용한 SBR를 사용한 선박폐수의 처리효율은 안정적이었다. 포기시에 SBR 내의 pH는 초기의 8.1에서 30분동안에 pH는 7.0으로 감소하였다. 무산소 단계인 3단계와 4단계에서 pH는 증가하기 시작하여 최종적으로 pH는 7.3으로 유지되었다. TOC제거량에 대한 슬러지 생성량은 약0.36kg·MLSS/kg·TOC으로 나타났으며 낮은 슬러지 발생율과 높은 슬러지 침강성을 나타내었다. 반응조에서 바실러스균의 평균 우점율은 24.2%로 나타났고 각 반응단계에서 안정적인 처리효율을 얻을 수 있어 충분히 우점화 되었다고 판단할 수 있었다.
        25.
        2004.04 KCI 등재 서비스 종료(열람 제한)
        본 논문에서는 질소와 인을 동시에 처리할 수 있는 생물학적 처리공정의 하나인 연속 회분식 반응기(SER)를 사용하여 선박에서 발생되는 오ㆍ폐수에 대한 처리 성능을 평가하였다. 본 처리공정에서 Bacillus sp.를 이용하여 질소와 인을 동시에 제거할 수 있었다. 유기물(COD)의 변화는 유입수의 COD의 농도가 370mg/l이고 유출수에서 6.5mg/l 제거효율이 90.5%이상으로 나타났다. 총 질소는 97%정도 제거하였고 총인은 93%정도를 처리하였다. 계면활성제(MBAS)는 93%이상 처리되어 미생물 처리에 대한 저해작용은 관찰되지 않았다.
        26.
        2004.03 KCI 등재 서비스 종료(열람 제한)
        The SBR(Sequencing Batch Reactor) process is ideally suited to treat high loading wastewater due to its high dilution rate. SBR operates by a cycle of periods consisting of filling, reacting, settling, decanting and idling. The react phases such as aeration or non-aeration, organic oxidation, nitrification, denitrification and other biological reactions can be achieved in a reactor. Although the whole reactions can be achieved in a SBR with time distributing, it is hard to manage the SBR as a normal condition without recognizing a present state. The present state can be observed with nutrient sensors such as NH4+-N, NO2--N, NO3--N and PO43--P. However, there is still a disadvantage to use the nutrient sensors because of their high expense and inconvenience to manage. Therefore, it is very useful to use common on-line sensors such as DO, ORP and pH, which are less expensive and more convient. Moreover, the present states and unexpected changes of SBR might be predicted by using of them. This study was conducted to get basic materials for making an inference of SBR process from ORP(oxidation reduction potential) of synthetic wastewater. The profiles of ORP, DO, and pH were under normal nitrification and denitrification were obtained to compare abnormal condition. And also, nitrite and nitrate accumulation were investigated during reaction of SBR. The bending point on ORP profile was not entirely in the low COD/NOx ratio condition. In this case, NOx was not entirely removed, and minimum ORP value was presented over -300mV. Under suitable COD/NOx ratio which complete denitrification was achieved, ORP bending point was observed and minimum ORP value was under -300mV. Under high COD/NOx ratio, ORP bending point was not detected at the first subcycle because of the fast denitrification and minimum ORP value was under -300mV at the time.
        28.
        2000.04 KCI 등재 서비스 종료(열람 제한)
        A kinetic study for anion exchange was performed for commercially available Cl- type anion exchange resin in use to remove nitrate in water. The obtained results from the batch reactor were applied to the Langmuir and Freundlich models. The constants for Langmuir model were qmax=29.82 and b=0.202, and for Freundlich model were K=5.509 and n=1.772. Langmuir model showed better fit than Frendlich model for the experimental results. Ion exchange reaction rate was also calculated and the approximate first-order reaction, rate constant k1 was 0.16 L/㎎·hr. Effective diffusion coefficient was obtained in the range from 9.67×10 exp (-8) to 1.67×10 exp (-6) ㎠/sec for initial concentration change, and from 6.09×10 exp (-7) to 3.98×10 exp (-6) ㎠/sec for reaction temperature change. Activation energy during the diffusion was calculated as 36 ㎉/㏖.
        30.
        1997.12 KCI 등재 서비스 종료(열람 제한)
        Sequencing Batch Reactor(SBR) experiments for organics and nutrients removal have been conducted to find an optimum anaerobic/anoxic/aerobic cycling time and evaluate the applicability of oxidation-reduction potential(ORP) as a process control parameter. In this study, a 6 ℓ bench-scale plant was used and fed with night-soil wastewater in K city which contained TCODcr : 10,680 ㎎/ℓ, TKN : 6,893 ㎎/ℓ, NH_4^+ -N : 1,609 ㎎/ℓ, PO_4^3- -P : 602 ㎎/ℓ on average. The cycling time in SBRs was adjusted at 12 hours and 24 hours, and then certainly included anaerobic, aerobic and anoxic conditions. Also, for each cycling time, we performed 3 series of experiment simultaneously which was set up 10 days, 20 days and 30 days as SRT. From the experimental results, the optimum cycling time for biological nutrient removal with night-soil wastewater was respctively 3hrs, 5hrs, 3hrs(anaerobic-aerobic-anoxic). Nitrogen removal efficiency was 77.9%, 77.9%, 81.7% for each SRT, respectively. When external carbon source was fed in the anoxic phase, ORP-bending point indicating nitrate break point appeared clearly and nitrogen removal efficiency increased as 96.5%, 97.1%, 98.9%. Phosphate removal efficiency was 59.8%, 64.5%, 68.6% for each SRT. Also, we finded the applicability of ORP as a process control parameter in SBRs.
        31.
        1997.10 KCI 등재 서비스 종료(열람 제한)
        In the study, we investigated the behavior and removal efficiency of organics, nitrogen, phosphorus with operating conditions in SBRs. Substrate used was synthetic wastewater in which the ratio of COD_cr : N : P was 100 : 12 : 2. The cycling time in SBRs was adjusted at 6 hours and 8 hours, and then certainly included anaerobic and aerobic conditions. Also, for each cycling time, we performed 2 series of experiment simultaneously which was set up 10 days and 20 days as SRT. The removal efficiency of COD_cr, was over 97% in all operating conditions. In the 6 hours cycling time, the removal efficiency of PO_4^3- -P reached almost 100% in steady state. And then we could observe a typical phenomena of phosphorus release and uptake, and the removal efficiency of N was 67%. Residual N source was almost TKN and most of the rest remained as NO_2^- -N. Also the difference in both SRTs was not observed practically. In the 8 hours cycling time, dissolution of sludge appeared. and, PO_4^3- -P was not nearly removed but nitrogen was removed up to 75%. And the residual nitrogen was accumulated as NO_2^- -N.
        32.
        1997.10 KCI 등재 서비스 종료(열람 제한)
        In the study, we investigated the behavior and removal efficiency of organics, nitrogen, phosphorus with operating conditions in SBRs. Substrate used was synthetic wastewater in which the ratio of COD_cr : N : P was 100 : 12 : 2. The cycling time in SBRs was adjusted at 6 hours and 8 hours, and then certainly included anaerobic and aerobic conditions. Also, for each cycling time, we performed 2 series of experiment simultaneously which was set up 10 days and 20 days as SRT. The removal efficiency of COD_cr, was over 97% in all operating conditions. In the 6 hours cycling time, the removal efficiency of PO_4^3- -P reached almost 100% in steady state. And then we could observe a typical phenomena of phosphorus release and uptake, and the removal efficiency of N was 67%. Residual N source was almost TKN and most of the rest remained as NO_2^- -N. Also the difference in both SRTs was not observed practically. In the 8 hours cycling time, dissolution of sludge appeared. and, PO_4^3- -P was not nearly removed but nitrogen was removed up to 75%. And the residual nitrogen was accumulated as NO_2^- -N.
        33.
        1993.06 KCI 등재 서비스 종료(열람 제한)
        An experimental research was conducted in order to study the treatability of leachate and a combined wastewater of municipal landfill leachate and municipal sewage. The landfill leachate was that of Nanjido landfill site, and the municipal sewage was obtained from Chungnang municipal sewage treatment plant of Seoul. Several sets of bench-scale sequencing batch reactor(SBR) were used as experimental apparatus. Specially investigated items in this experiment were the removal efficiency of substrate and the influence of the hydraulic retention time(HRT). The experiment lasted for about 8 months. The result are as follows ; 1) The characteristics of leachate were pH 7.4∼8.1, BOD 280∼450 ㎎/1, COD 1300∼1350 ㎎/l, T-N 2021∼2110 ㎎/l, T-P 2.7∼3.2 ㎎/l, Cl- 3540∼4085 ㎎/l, and heavy metals are a very small amount. And the characteristics of sewage were pH 6.9∼7.3, BOD 78.4∼129.3 ㎎/l, COD 121.2∼305.0 ㎎/l, T-N 14.9∼36.4 ㎎/l, T-P 1.3∼5.9 ㎎/l. 2) The treatability of leachate alone was not treat well. So for the good treatment of leachate, it w;is necessary to deal with the pretreatment before biological treatment and a combined treatment of municipal sewage. 3) The various contents of the leachate were 5%, 10%, 30%, and 50%, and the removal efficiency of COD was 86.0%, 82.8%, 60.6%, and 31.7%. The maximum content of the leachate which could be successfully treated by SBR in the combined treatment eas 10% of that of sewage.
        1 2